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ABSTRACT For real-world applications with a single monocular camera, scale ambiguity is an important
issue. Because self-supervised data-driven approaches that do not require additional data containing scale
information cannot avoid the scale ambiguity, state-of-the-art deep-learning-basedmethods address this issue
by learning the scale information from additional sensor measurements. In that regard, inertial measurement
unit (IMU) is a popular sensor for various mobile platforms due to its lightweight and inexpensiveness.
However, unlike supervised learning that can learn the scale from the ground-truth information, learning
the scale from IMU is challenging in a self-supervised setting. We propose a scale-aware monocular visual-
inertial depth estimation and odometry method with end-to-end training. To learn the scale from the IMU
measurements with end-to-end training in the monocular self-supervised setup, we propose a new loss
function named as preintegration loss function, which trains scale-aware ego-motion by comparing the ego-
motion integrated from IMU measurement and predicted ego-motion. Since the gravity and the bias should
be compensated to obtain the ego-motion by integrating IMUmeasurements, we design a network to predict
the gravity and the bias in addition to the ego-motion and the depth map. The overall performance of the
proposed method is compared to state-of-the-art methods in the popular outdoor driving dataset, i.e., KITTI
dataset, and the author-collected indoor driving dataset. In the KITTI dataset, the proposed method shows
competitive performance compared with state-of-the-art monocular depth estimation and odometrymethods,
i.e., root-mean-square error of 5.435 m in the KITTI Eigen split and absolute trajectory error of 22.46 m and
0.2975 degrees in the KITTI odometry 09 sequence. Different from other up-to-scale monocular methods,
the proposed method can estimate the metric-scaled depth and camera poses. Additional experiments on the
author-collected indoor driving dataset qualitatively confirm the accurate performance of metric-depth and
metric pose estimations.

INDEX TERMS Deep learning, monocular depth estimation, self-supervised learning, visual-inertial
odometry.

The associate editor coordinating the review of this manuscript and
approving it for publication was Erwu Liu.

I. INTRODUCTION
Ego-motion estimation and 3d reconstruction with a monoc-
ular camera have broad applicability because a monoc-
ular camera is inexpensive and lightweight. Especially,
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data-driven monocular depth estimation has received atten-
tion, because they give a dense depth map from an image and
ground-truth depth in a supervised manner by training a deep
neural network [1], [2], [3].

To avoid the cost of collecting the ground-truth depth with
an additional device, self-supervised monocular depth esti-
mation has been proposed. State-of-the-art self-supervised
methods jointly train the depth map and ego-motion for
structure from motion during the training step, so it requires
the sequences of monocular images during the training step
[4], [5], [6], [7].

Nevertheless, self-supervised methods have scale ambi-
guity originating from the nature of the monocular camera
because they have no criteria about the scale information
unlike supervised methods with ground-truth depth informa-
tion. In general, an additional sensor is introduced to address
the scale ambiguity issue. In that regard, inertial measurement
unit (IMU) is a popular sensor for various mobile platforms
because of its lightweight and inexpensiveness. In clas-
sical vision, state-of-the-art visual-inertial methods predict
the ego-motion with scale prediction using the sequences of
monocular images and IMU measurements [8], [9].

Because the deep-learning-based approach has a capability
of predicting a dense depth map from a single image, some
researchers have incorporated IMU into the deep-learning
like the classical visual navigation literature [10], [11], [12],
[13], [14], [15]. However, learning the scale from IMU
is challenging in self-supervised setting. To overcome this
issue, the training concept to learn the scale from the classical
visual-inertial navigation was introduced [16], [17], [18], but
it highly relies on the performance of the classical navigation.

In this paper, we propose deep-learning-based depth esti-
mation and odometry using visual-inertial data with a monoc-
ular self-supervised setup, scale-aware prediction, and an
end-to-end training framework. The proposed method con-
serves the characteristic of the monocular self-supervised
setup, which can train the network using the same type of
data used for the inference. In addition, the proposed method
can predict the scale-aware depth and pose with end-to-
end frameworks. In comparison to the other self-supervised
monocular methods, some methods need the teaching of
classical visual-inertial navigation [16], [17], [18], and others
only predict the up-to-scale information even if IMU mea-
surements are provided [13], [14]. Also, unlike the classical
visual-inertial navigation methods requiring the sequences of
images, the proposed method can function with only a single
image or two images with the IMU measurements once the
network was trained.

To train the scale-aware depth and pose, we propose a
new loss function named preintegration loss function, which
explicitly considers the scale of the ego-motion. The scale-
aware ego-motion is trained from the ego-motion by inte-
grating the IMU measurements using the preintegration loss.
Information on velocity, gravity, and bias is necessary in order
to obtain the ego-motion with IMU integration. We propose

the estimation method for the velocity, and the network archi-
tecture to predict the gravity in body coordinates and the
bias in addition to the ego-motion and depth map for IMU
integration. Also, the regulation loss function is proposed to
regulate the gravity and bias and avoid the gravity and bias
affected by preintegration loss only.

In addition, we propose the augmentation method for
visual-inertial data. Horizontal flip augmentation is a com-
mon technique in visual learning problems due to its simplic-
ity. However, IMUmeasurements should be considered if the
image is flipped, so flip augmentation has rarely been per-
formed for the visual-inertial learning problem. We propose
horizontal flip augmentation considering IMU dynamics by
justifying integrated ego-motion in the horizontally flipped
camera coordinates.

The contributions of this paper can be summarized as the
following:

• We propose a new loss function to learn the scale from
the IMU measurements during the training step, which
conserves the monocular self-supervised setup with the
end-to-end training framework.

• Wepropose a network architecture predicting the gravity
in body coordinates and the bias of IMU and proper
regularization function for the gravity and bias to train
the network using the new loss function.

• We propose a horizontal flip augmentation method for
visual-inertial data considering IMU dynamics.

We validate the proposed method in the KITTI dataset and
an indoor experiment in comparison with the state-of-the-art
deep-learning-based monocular self-supervised methods and
classical monocular visual-inertial navigation methods.

We describe related works in section II. Then, we briefly
describe self-supervised monocular depth estimation and
IMU preintegration as preliminary in section III. Section IV
describes the proposed method including the preintegration
loss function and the network architecture. Then, we perform
an ablation study and validate the proposed algorithm by
comparison with other methods in section V. Finally, con-
clusion follows.

II. RELATED WORKS
In this section, we list related works about deep-
learning-based monocular depth estimation and classical
visual-inertial navigation. First, deep-learning-based depth
estimation with monocular images is categorized based on
the training data. Then, the classical visual-inertial navigation
is discussed. Finally, we summarize the deep-learning-based
depth estimation and odometry which receive an image and
IMU as input.

A. SUPERVISED MONOCULAR METHODS
Supervised methods aim to construct a deep neural net-
work that predicts the depth map from a single RGB image
and the ground-truth depth information. Such possibility
was firstly reported in [1] with the convolutional neural

24088 VOLUME 11, 2023



C. Lee et al.: Scale-Aware Visual-Inertial Depth Estimation and Odometry Using Monocular Self-Supervised Learning

FIGURE 1. The overview of the proposed algorithm. During the inference step, a dense depth map and ego-motion are predicted from a pair of
consecutive images and IMU measurements. During the training step, the gravity direction in the body coordinate and the bias of IMU are additionally
predicted to learn the real-world scale for the preintegration loss function.

network. By adopting the fully convolutional neural net-
work, the monocular depth estimation was significantly
improved [2].Many researchers have focused on addingmore
depth cues or refining training problems during the training
step for an accurate depth map [3], [19], [20]. The super-
vised methods show better performance than unsupervised or
self-supervised methods, but they need ground-truth depth
information during the training step.

B. UNSUPERVISED MONOCULAR METHODS
Unsupervised methods aim to train the depth estimation net-
work without the ground-truth depth or pose information.
To learn the depth with no ground-truth depth data, the pairs
of stereo images have been employed. The reconstruction
error was proposed in [21], which originated from the epipo-
lar geometry. This loss was refined in [22] to a fully dif-
ferentiable form for better backpropagation. Some research
focused on adding depth cues like supervised approaches,
such as the consistency of the disparity between the left and
right images proposed in [22]. Meanwhile, the work in [23]
formulated the unsupervised stereo approach as the syn-
thesizing and stereo-matching problem. Those unsupervised
methods can predict the depthmapwith the scale information,
but they require a stereo system for collecting training data.

C. SELF-SUPERVISED MONOCULAR METHODS
Self-supervised methods aim to train the depth estimation
network with sequences of monocular or stereo images.
In this paper, we focus on self-supervised monocular meth-
ods, which utilize the sequences of monocular images.
It is noted that self-supervised monocular methods require
monocular images during the training step. Thus, the net-
work can be trained from the data collected during the
inference. State-of-the-art self-supervised monocular meth-
ods jointly estimate the depth map and ego-motion [4].

Some approaches have tried to predict optical flow in addi-
tion to the depth information to explicitly express geometry
information [5], [24]. Reference [25] designed the photo-
metric consistency loss in the latent space obtained from
the auto-encoder network instead of raw images. Consid-
ering the 3-dimensional property, [26] proposed the 3D
packing network, which performs 3D convolution operation
from the 2D data. Edge-aware depth prediction with high-
resolution images was performed [27]. Focusing on scale
consistency, [28] proposed scale-aware geometric loss by
aligning the point clouds between frames, which helped to
conserve the scale but could not predict the metric scale.

Some research focused on real-time applications for
mobile platforms by optimizing the network architec-
ture [29], [30]. To reject occluded or moving pixels for the
reprojection loss, the auto-mask was introduced in [7], which
generates a binary mask of the possibly occluded region. Ref-
erence [31] adopted the generative adversarial networks into
the monocular depth estimation, and showed the performance
enhancement. For the input of the sequence of images, the
recurrent neural network was proposed in [6], [32]. However,
these self-supervised methods suffer from scale ambiguity
due to the nature of the monocular camera.

D. CLASSICAL VISUAL-INERTIAL METHODS
Classical visual-inertial navigation, for odometry and simul-
taneous localization and mapping (SLAM), has been widely
researched. Some survey papers provide a good review of
its long history [33], [34], [35]. Thus, in this paper, we only
mention the common characteristics and a few state-of-the-
art monocular visual-inertial navigation methods.

Classical navigation methods can be categorized into two
types based on the problem formulation: filtering-based and
optimization-based methods. Filtering-based methods design
the filter which expresses the state and measurements of
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the robot, respectively. Then, the designed filter is operated
during inference [36], [37], [38], [39]. Optimization-based
methods construct the performance index from the camera
geometry and perform non-linear optimization [8], [9], [40].

For the optimization-based methods, IMU initialization
is required at the beginning, and the vehicle/robot should
generate the acceleration and the tilting motion in the roll and
pitch directions for the monocular case. In automobile envi-
ronments, IMU initialization may fail because the dominant
motion of the car is yaw direction.

E. LEARNING-BASED VISUAL-INERTIAL METHODS
Some researchers included IMU into the deep-learning
approach when the ground-truth information is given. Refer-
ence [10] showed that visual-inertial odometry can be solved
using a deep-learning-based approach. For the robustness
against noisy image or IMU observation, the selective fusion
layer which fuses the visual and inertial features was pro-
posed in [11]. However, both methods require the ground-
truth pose during the training step.

Unsupervised visual-inertial odometry with the pipeline
of IMU preintegration was proposed in [12], but it requires
stereo images during the training step. Reference [13] pro-
posed self-supervised monocular visual-inertial depth esti-
mation and odometry, adopting the generative adversarial
network. The predicted poses are integrated and additionally
optimized using the geometric and trajectory consistency
with monocular-inertial input [14]. Both methods, however,
cannot predict the scale information. A multi-level visual-
inertial odometry strategy was proposed in [15] for RGB-D
images. They can predict scale, but they need the dense depth
map as an input containing the scale information.

To estimate the scale with IMU measurements, some
methods tried operating classical visual-inertial odometry to
obtain the sparse depth or ego-motion having scale infor-
mation. The depth completion using the sparse depth pro-
vided by the classical visual-inertial navigation was proposed
in [16], [17]. Those works, nonetheless, assume that sparse
depth information is given by a navigation system for depth
prediction, which requires a sequence of images, not a sin-
gle image. Reference [18] proposed the transfer learning of
the depth estimation network with teaching of the classical
visual-inertial method to learn the scale of the new environ-
ment. Since thesemethods require classical navigation during
the training step, whenever the classical method fails, so do
they.

In this paper, we propose the scale-aware monocular
self-supervised method using IMU measurements with end-
to-end training. All the other algorithms discussed above
did not achieve at least one of those characteristics: the
monocular self-supervised setup, scale-aware prediction, and
end-to-end training. Some researchers provided scale-aware
prediction with the supervised, unsupervised, or stereo self-
supervised setup requiring additional training data collected
from LiDAR, stereo system, and so on [10], [11], [12], [15].

Others predicted up-to-scale depth with monocular self-
supervised setup with the IMU measurements [13], [14].
The others could predict scale-aware depth by teaching
from the classical visual-inertial navigation method, which
could not train in an end-to-end manner and relied on
the performance of the classical visual-inertial navigation
method [16], [17], [18].

III. PRELIMINARY
The proposed method originates from self-supervised
monocular depth estimation and is upgraded to learn the
scale by integrating IMU measurements. In this section,
we describe the self-supervised monocular depth estimation
and IMU preintegration as preliminaries.

A. SELF-SUPERVISED MONOCULAR DEPTH ESTIMATION
For self-supervised monocular depth estimation, the depth
map and the ego-motion are jointly predicted. Thus, two
convolutional neural networks are constructed: one is the
depth network predicting the dense depth map from a single
RGB image, and the other is the pose network predicting the
relative pose from a pair of consecutive images.

To train the networks, the photometric consistency loss is
introduced based on the motion stereo. To express the motion
stereo, from the point in the pixel coordinate of the current
view un, we obtain the point in the pixel coordinate of the next
view ûn+1 using a predicted dense depth map D̂n, predicted
relative pose T̂n→n+1 in the special Euclidean group SE(3)
and camera intrinsic parameter K as

ûn+1 = KT̂n→n+1D̂n(un)K−1un (1)

with some notation abuses for simplicity.
Then, wewarp the current image In into the view of the next

frame denoted as În+1 by the differentiable bilinear sampling
mechanism [41]. The photometric consistency loss [42] is
formulated as the distance between the target image In+1 from
the dataset and the warped image În+1 as

Lphoto =
1
N

∑
u

[
dist(In+1, În+1)

]
(2)

where dist(x, y) is a distance function between two images.
In this paper, we adopt [42] given as dist(x, y) = α |x − y| +

0.5(1−α)(1−SSIM(x, y)) with the scalar constant α = 0.15.
In addition, for regulation, we also minimize edge-aware

depth smoothness [22] as

Lsmooth =

∑
i∈{x,y}

|∂iD̂n| exp (−|∂iIn|) (3)

where ∂i is the partial derivative operator respective to i.
To reject the effect of the occluded or moving pixel which

breaks the photometric consistency, per-pixel mask µ ∈

[0, 1] is multiplied by the distance between images for the
photometric consistency loss as

Lphoto =
1
N

∑
u

[
µ dist(In+1, În+1)

]
. (4)
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In this paper, we adopt the auto-mask [7], binary masking
method calculated from source and target images as

µ =

{
1 if dist(In+1, În+1) > dist(In+1, In)
0 otherwise .

(5)

B. IMU PREINTEGRATION
IMU preintegration aims to integrate raw IMUmeasurements
to obtain the ego-motion between two image frames. In other
words, the rotation RN , velocity vN and translation pN at the
next frame ego-motion (•N ) should be formulated with the
current ego-motion (•0) and IMU measurements containing
the acceleration ãi and the angular velocity ω̃i.
Then, the ego-motion at the i-th frame on the inertial

coordinate is expressed as

Ri = R0
i−1∏
k=0

exp (ωk1tk) (6)

vGi = vG0 +

i−1∑
k=0

(Rkak − gG)1tk (7)

pGi = pG0 +

i−1∑
k=0

vk1tk +
1
2

i−1∑
k=0

(Rkak − gG)1t2k (8)

where •
G is the variable in the inertial coordinate, 1tk is the

elapsed time from k to k + 1, ωk = ω̃k − bω
k − ηω

k is the
unbiased angular velocity at k with bias bω

k and noise ηω
k , ak =

ãk−bak−ηak is the unbiased acceleration at k with bias b
a
k , and

the gravity gG. exp is an exponential map of the Lie algebra
of the special orthogonal group so(3).

IV. SELF-SUPERVISED MONOCULAR VISUAL-INERTIAL
DEPTH ESTIMATION AND ODOMETRY
In this section, we describe the proposedmethodwhich learns
the real-world scale from the IMU measurements. Fig. 1
shows the overview and flowchart of the proposed method.
The proposed method predicts the depth map from the sin-
gle image, and predicts the ego-motion, the gravity in body
coordinates, and IMU bias from the two consecutive images
and IMU measurements. Next, the image is warped using the
depth map and ego-motion to obtain and minimize the photo-
metric consistency loss defined as the difference between the
reference image and the warped image. In addition, the IMU
measurements are integrated using the predicted gravity and
bias to obtain the scale-aware ego-motion. Then, we mini-
mize the preintegration loss defined as the difference between
the integrated ego-motion and prediction ego-motion. The
integrated ego-motion has scale, so does the predicted ego-
motion by minimizing the preintegration loss.

We formulate the proposed method into two parts. The first
part is the loss function to train the network, which generates
the relation about the scale from the IMU measurements
during the training step. The second part is the network
architecture suitable for the proposed loss function.

A. LOSS FUNCTION
We describe each loss function of the proposed method,
and the total loss is described at the end of this section.
The proposed methods utilize three loss functions to opti-
mize networks: photometric consistency loss function from
state-of-the-art self-supervised monocular depth estimation
to learn scale-unaware depth and ego-motion, preintegration
loss function to learn the scale of ego-motion from the IMU
measurements, and regulation loss function about the gravity
direction and the bias to regulate the effect of predicted
gravity direction and the bias.

1) PHOTOMETRIC CONSISTENCY LOSS
The photometric consistency loss has been widely employed
to optimize the depth map and the ego-motion from con-
secutive images. This loss expresses the epipolar geometry
structure frommotion. We adopt the photometric consistency
loss (4) and the depth smoothness loss (3) like most state-of-
the-art self-supervised methods described in section III-A.

2) PREINTEGRATION LOSS
The preintegration loss obtains the scale-aware ego-motion
by integrating IMU measurements like IMU preintegration
described in section III-B and compares predicted ego-motion
with the obtained ego-motion. The main role of the preinte-
gration loss is to learn the scale from IMU measurements by
integrating the IMU measurements and correcting integrated
and predicted ego-motion. Since the photometric consistency
loss does not incorporate the scale, only preintegration loss
contributes to the learning of the scale.

For the predicted relative pose in the body coordinate ζN =

(wN , zN ) defined on se(3), the Lie algebra of SE(3), at timeN ,
we define the relative form of the rotation 1RN , the velocity
1vN and the translation 1pN as

1RN := RT0 RN = expwN (9)

1vN := RT0
(
vGN − vG0

)
= 1RN vBN − vB0 (10)

1pN := RT0
(
pGN − pG0 − vG0 1TN

)
= pBN − vB01TN (11)

where •
G and •

B are the parameter in the inertial and body
coordinates, respectively, 1TN is the elapsed time from time
0 to time N , and pBN = JwN zN is the translation of the relative
pose with the left Jacobian of wN denoted as JwN .
Using IMU preintegration (6)-(8), 1•N can be written as

1R̂N =

N−1∏
k=0

exp
(
ω̂k1tk

)
(12)

1v̂N =

N−1∑
k=0

(1R̂k âk − gBN )1tk (13)

1p̂N =

N−1∑
k=0

1v̂k1tk +
1
2

N−1∑
k=0

(1R̂k âk − gBN )1t
2
k (14)
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where ω̂ = ω − ηω is the measured angular velocity, â =

a − ηa is the measured acceleration, and gBN = RNgG is the
gravity in the body coordinate. In this paper, we denote 1•N
as •N from the relative pose and 1•̂N as that from the IMU
measurements to distinguish those.

From (9)-(14), three equality constraints can be generated:
1•N = 1•̂N where • = R, v, p. To solve those equality con-
straints, however, the velocity vB0 should be known. From the
equality of the translation p, the closed-form of the velocity
can be obtained as

vB0 =
1

1TN

(
pBN − 1p̂N

)
. (15)

Then, 1vN is reformulated as

1vN = 1RN vBN −
1

1TN

(
pBN − 1p̂N

)
. (16)

The calculated velocity vB0 may be noisy because (15) is
the finite difference of the predicted pose pBN . Therefore,
we smooth the translation pBN by moving the average filter
along the temporal axis when calculating the velocity to
suppress the noise in the implementation.

Finally, we obtain the preintegration loss as the norm of
two remaining equality constraints as

Lrot = λrot
∥∥1RN − 1R̂N

∥∥ (17)

Lvel = λvel
∥∥1vN − 1v̂N

∥∥ (18)

where λ• is the hyper-parameter for weighting the loss func-
tions and

∥∥•
∥∥ is a norm function. We adopt the logcosh as a

norm function in the implementation to suppress the effect of
the outlier for fast convergence.

3) REGULATION LOSS
In addition to the scale and ego-motion, both predicted grav-
ity and bias affect the IMU preintegration loss. If no regula-
tion is performed, gravity and bias can be freely regressed,
so the scale, gravity and bias may be wrongly estimated.
Therefore, we carefully design the regulation loss of the
gravity direction and the bias of IMU.

a: GRAVITY REGULATION
The gravity in the inertial coordinate is assumed constant,
and the gravity in the body coordinate and the ego-motion
are coupled. Hence, we design the gravity regulation loss to
express the gravity in the body coordinate using the predicted
ego-motion. In the body coordinate, the gravity at timeN (ĝBN )
can be estimated from the gravity predicted by the network at
time 0 (gB0 ) and the rotational ego-motion (1RN ) as

ĝBN = 1RNgB0 . (19)

Since the magnitude of gravity is constant, we adopt the
geodesic distance on the surface of the sphere as the loss
function between the gravity predicted by the network at time

N (gBN ) and the estimated gravity ĝBN from (19):

Lgrav = λgrav arctan

∣∣∣gBN × ĝBN
∣∣∣

gBN · ĝBN
(20)

where the symbols · and × are the inner and outer products
defined in R3.

b: BIAS REGULATION
It is known that the bias varies slowly, so most classical
visual-inertial navigation methods construct the bias model
as a constant with Gaussian noise. Similarly, we regulate both
angular and linear bias by minimizing the bias difference
among adjacent frames as

Lbdiff = λbdiffω
∥∥bω

N − bω
0

∥∥2
2 + λbdiffa

∥∥baN − ba0
∥∥2
2 . (21)

In addition to the regulation among adjacent frames,
we also regulate the magnitude of the bias term to avoid bias
prediction that is too large. This regulation is expressed as

Lbmag = λbmagω
∥∥bω

N

∥∥2
2 + λbmaga

∥∥baN∥∥2
2 . (22)

4) TOTAL LOSS
The total loss function is the linear combination of the above
losses: the photometric consistency loss (4) with the smooth-
ness loss (3), the preintegration loss of the rotational part (17)
and the velocity part (18), the gravity regulation loss (20), and
the bias regulation loss (21)-(22), as

L = Lphoto + Lsmooth + Lrot + Lvel +

Lgrav + Lbdiff + Lbmag. (23)

B. NETWORK ARCHITECTURE
The proposed approach estimates the depth map, the ego-
motion, the gravity direction and IMU bias from images
and IMU measurements. We design two networks: a depth
network and an odometry network. The depth network
estimates the depth map from a single RGB image. The
odometry network estimates the relative pose between
two frames, gravity direction and IMU bias from the
two consecutive images and IMU measurements between
images.

1) DEPTH NETWORK
We adopt the depth network proposed in [7]. The network
has the U-Net structure [43], which is a fully convolutional
encoder-decoder structure with skip-connection. We select
ResNet18 [44] as an encoder. The depth network receives
a single image, and no IMU information is received. The
proposed depth network can estimate the scale by learning
the scale using the preintegration loss during the training
step.

2) ODOMETRY NETWORK
We design an odometry network emitting relative pose, IMU
bias and gravity direction. Fig. 2 shows the outline of the pro-
posed odometry network. The odometry network consists of
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FIGURE 2. The outline of the proposed odometry network. The network receives a pair of consecutive images and IMU measurements between
images. Then, the network emits the relative pose between images, the direction of gravity in the body coordinate, and the bias of the IMU
measurements. Conv is the convolution layer, LSTM is the long short-term memory layer, and FC is the fully connected layer, respectively.

a visual encoder, inertial encoder, feature fusion and several
decoders.

a: VISUAL ENCODER
We select ResNet18 as a visual encoder, which is almost the
same as that of the depth network. As input, two consecutive
images stacked along the channel axis are provided.

b: INERTIAL ENCODER
We adopt bidirectional Long Short-Term Memory (LSTM)
for encoding the IMU measurements. Because IMU mea-
surements are stacked between two image frames, they
have temporal meaning so a recurrent neural network is
selected. In detail, the inertial encoder has three bidirectional
LSTM layers with 128 channels and one dense layer with
128 dimensions.

c: FEATURE FUSION
The feature fusion part of the network aims to merge visual
and inertial features provided by each encoder. We focus
on balancing each feature to avoid a feature being ignored.
Firstly, we add a single dense layer for each network: 256 for a
visual encoder, and 128 for an inertial encoder. Then, we nor-
malize by layer normalization [45] for each feature to have a
similar magnitude. Next, both features are concatenated to be
fused as a single feature.

d: DECODER
Several decoders receive the same feature from the feature
fusion part and emit the final output, respectively. Each
decoder contains seven dense layers to decode the fused
feature. The channel of each layer is 256, 256, 128, 128, 64,
64, and the dimension of the output (e.g., 7 for the relative
pose, 2 for the gravity, and 6 for the bias). Each decoder has an

additional activation to properly constrain the output. In gen-
eral, the input and output of the network have a magnitude
of around 1, so the scalar hyper-parameter may be multiplied
into the output. Additionally, special activation is applied to
some outputs if necessary.

For the gravity, we regress a 2-dof vector on the spherical
coordinate because the magnitude of the gravity is fixed. For
fast convergence of gravity prediction, the gravity direction
is converted considering the nominal gravity direction in the
robot platform by initializing the network bias as zero. For
instance, if the nominal gravity direction heads z-axis like the
KITTI dataset, the activation for the gravity direction is

gB =
∥∥g∥∥2 [

sin θ cosφ sin θ sinφ cos θ
]T (24)

where (θ, φ) are inclination and azimuth, which are predicted
from the network, and

∥∥g∥∥2 = 9.81 m/s2.
For the relative pose, we regress a 7-dof vector of logarithm

forms of the translation z̃, rotation ω and the pseudo-scale s
for the ego-motion (z,ω) on se(3) as

z = z̃ exp s. (25)

Here, the pseudo-scale exp s is not a real-world scale because
the magnitude of the translation z̃ is not constrained.

V. EXPERIMENTAL VALIDATION
We perform validation in the KITTI dataset [46], one of the
famous dataset collected using the vehicle, and in indoor envi-
ronments with the automobile platforms at the underground
parking lot. First, we perform two ablation studies to show
whether the proposed loss function contributes to learning
the scale. Then, we show the depth performance based on
the Eigen split and the pose performance based on the KITTI
odometry dataset.We show the result of the proposedmethod,
with the description of the detailed implementation of the
experiment.
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A. DATA AUGMENTATION
For deep-learning applications, data augmentation has been
widely performed to generate additional data from a given
dataset. In this section, we describe our data augmentation.

1) IMAGE AUGMENTATION
We perform image augmentation at 50% probability,
by changing the brightness, contrast, saturation and hue.
If image augmentation is performed, we randomly select
values from uniform distribution: brightness ∈ [0.8, 1.2],
contrast∈ [0.8, 1.2], saturation∈ [0.8, 1.2] and hue in degree
∈ [−36, 36]. All the images in the sequence are converted
with the same type of augmentation.

2) LEFT-RIGHT FLIP AUGMENTATION
Flip augmentation is a common augmentation method for
deep-learning-based visual applications. Because the gravity
usually heads downwards in the camera view, only a left-right
direction flip is performed to conserve the nominal direction
of gravity. Unlike image augmentation, IMU measurements
should also be converted for this flip, since the ego-motion in
the coordinate of the flipped camera is changed. We generate
the corresponding IMU measurements to justify the ego-
motion obtained from the integration of IMU measurements
in the coordinates of the flipped camera as

w̃ = −T TVTw (26)

ã = T TVTa (27)

where (w, a) is IMU measurement with angular velocity w
and acceleration a, and (w̃, ã) is the converted IMU measure-
ment for left-right flip augmentation, V = diag(−1, 1, 1) is
transformation of flipped dynamics, and T is the rotation part
of the extrinsic calibration matrix.

B. IMPLEMENTATION DETAIL
In this section, we describe the implementation details of the
networks, the loss functions, and the optimization setup.

1) NETWORK
Each output of the decoder is multiplied by the following
heuristic value. noitemsep

• Angular part of the ego-motion: 1e-2
• Translation part of the ego-motion: 1e-2
• Pseudo-scale of the ego-motion: 1e0
• Gravity direction as angles: 3e-1
• IMU bias (angular part): 1e-2
• IMU bias (acceleration part): 1e-1
The proposed odometry network has three separate

decoders emitting the angular part of the ego-motion, the
translation part of the ego-motion and the pseudo-scale of
the ego-motion. Due to this separated decoder strategy, tuning
the heuristic values is almost not necessary.

2) LOSS DETAIL
To train the network, we use the ADAM [47] optimizer.
The learning rate is 4e-5 at the beginning of the training

and decreased by the inverse time policy with 0.98 ratios.
Additionally, each loss function has the weighting parameter
determined by the heuristic way as noitemsep

• Photometric consistency loss: 1
• Depth smoothness loss: 1e-2
• Preintegration loss (angular part): 4e3
• Preintegration loss (velocity part): 4e1
• Gravity regulation loss: 4e0
• Bias difference regulation loss (angular part): 1e2
• Bias difference regulation loss (acceleration part): 1e2
• Bias magnitude regulation loss (angular part): 1e-2
• Bias magnitude regulation loss (acceleration part): 1e-2

3) DATASET DETAIL
We collect all train data and randomly select approximately
1,100 sequences for each epoch. Each sequence consists of
8 consecutive images and a fixed number of IMU measure-
ments observed between two consecutive images (e.g., 10 for
the KITTI dataset, and 25 for the experiment). We iterate
200 epochs to train the networks, which takes approximately
40 hours in TITAN Xp GPU environments.

C. PERFORMANCE INDICES
In this section, we describe the performance indices for
depth and odometry validation in the xy-plane considering
automobile applications. For monocular methods that can-
not predict the scale, the scale is directly taken from the
ground-truth.

1) DEPTH VALIDATION
For the depth validation, five performance indices have been
widely reported: absolute relative error (Abs Rel), square
relative error (Sq Rel), root mean square error (RMSE), log
scale root mean square error (RMSE log), and accuracy (δ).
The ratio of pixels is reported whose accuracy is less than
1.25, 1.252, and 1.253, respectively.

Abs Rel = E
(∣∣∣D− D̂

∣∣∣ /D)
(28)

Sq Rel = E
((
D− D̂

)2
/D

)
(29)

RMSE =

√
E

((
D− D̂

)2)
(30)

RMSE log =

√
E

((
logD− log D̂

)2)
(31)

accuracy(δ) = max
(
D/D̂, D̂/D

)
(32)

where D and D̂ are the ground-truth and predicted depth,
respectively, and E(•) is the average of •.
For the methods with no scale prediction, the scale is

taken from the ground-truth depth in the same manner as [4],
which is the ratio of estimated median depth to ground-truth
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TABLE 1. The depth performance for the ablation study about
preintegration loss function.

FIGURE 3. The histogram of the scale from the predicted depth among
frames calculated by (33) for the ablation study about the preintegration
loss function. If the method estimates the real-world scale, the value
should be one, represented as the red-dashed line.

FIGURE 4. Top-down view of the predicted trajectory of KITTI odometry
09 for the ablation study concerning the bias regulation loss function.

median depth:

sdepth =
median(D)

median(D̂)
. (33)

2) POSE VALIDATION
In the odometry validation, average trajectory error (ATE)
and relative pose error (RPE) are some of the famous per-
formance indices as

ATEi = P−1
i SP̂i (34)

RPEi =

(
P−1
i Pi+1

)−1 (
P̂−1
i P̂i+1

)
(35)

where Pi and P̂i are the ground-truth and the predicted pose in
the inertial coordinate, respectively, and S is a time-invariant
rigid body transformation for the alignment. We compute

FIGURE 5. The bias prediction result at the KITTI odometry 09 for the
ablation study about the regulation loss function.

FIGURE 6. The histogram of the scale from the predicted depth among
frames calculated by (33). If the method estimates the real-world scale,
so the value should be one, represented as the red-dashed line. (·) next
to denotes the training data: (M) is monocular sequence, (S) is stereo
sequence and (MI) is monocular sequence with IMU measurement.

RMSE of the translation and the average of the rotation part
as

∗tr = argminS

√
E

(
∥•∥

2
tr
)

(36)

∗rot = E (∥•∥rot) (37)

where ∗ is ATE or RPE, ∥•∥tr is the Euclidean 2-norm of
the translation part of the rigid body matrix and ∥•∥rot is the
Euclidean 2-norm of the logarithm of the rotation matrix of
the rigid body matrix.

For the methods with no scale prediction, a single scale
value is taken from the ground-truth ego-motion across the
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TABLE 2. Depth estimation performance in KITTI Eigen split (80 m cap).

FIGURE 7. The depth prediction result on the Eigen split for qualitative comparison. The depth of ground-truth is generated from the lidar data with
bilinear interpolation, and other methods are collected from the results provided by the authors of [4], [7]. (·) next to denotes the training data: (M) is
monocular sequence, (S) is stereo sequence and (MI) is monocular sequence with IMU measurement. For the methods with (M), because no scale is
estimated, the scale is taken from the ground-truth depth as in (33).

whole trajectory by the least square solution minimizing the
translation part of RPE as

spose =

∑
i Pi · P̂i∑
i Pi · Pi

(38)

where · is a standard inner product in R3.

D. ABLATION STUDY
In the ablation study, we check the effectiveness of the pro-
posed loss function. The first ablation study is intended to
check whether the preintegration loss contributes to estimat-
ing a real-world scale. The second ablation study focuses on
the bias regulation loss function described.
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TABLE 3. Pose estimation performance in KITTI odometry dataset.

FIGURE 8. The top-down view of estimated trajectory of the KITTI odometry dataset. (·) next to the method denotes the
training data for the deep-learning-based method or the operating data for the classical navigation: (S) is stereo sequence,
(M) is monocular sequence and (MI) is monocular sequence with IMU measurements. For the methods with (M), because
no scale is estimated, the scale is taken from the ground-truth as in (38). Each trajectory is aligned by fixing the initial
point at origin.

1) ABLATION STUDY: PREINTEGRATION LOSS
In this ablation, we employ the proposed network architecture
which receives both image and IMU as input, but turn off the
preintegration loss function.

Table 1 shows the depth performance result. For no prein-
tegration case, the relative depth seems good if the scale is
taken from the ground-truth, but the raw depth is quite bad.
On the other hand, the proposed method shows reasonable
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FIGURE 9. The relative translation prediction result in IMU coordinate at
the beginning of the driving in the KITTI odometry 09 dataset.

FIGURE 10. The setup of our experiment. Using vehicle (a),
we experiment in an indoor environment like (b).

performance even in the raw depth case. Fig. 3 is the scale
prediction result of this ablation study, which shows that only
the proposed method converges to the real-world scale value.
We can conclude that without the preintegration loss, the rel-
ative depth can be trained due to the photometric consistency
loss like self-supervised monocular methods, but the real-
world scale is not learned.

2) ABLATION STUDY: BIAS REGULATION LOSS
In this ablation, we utilize the proposed network architecture
which receives both image and IMU as inputs, but we turn off
both bias regulation loss functions.

Fig. 4 shows the top-down view of the predicted trajectory
depending on whether the bias regulation loss is on. With-
out the bias regulation loss, the scale prediction is wrong.
As shown in Fig. 5, the magnitude of the bias is too large
and the bias tends to follow the motion of the vehicle.

E. DEPTH PERFORMANCE VALIDATION
We validate the performance of depth prediction in the KITTI
Eigen split. KITTI Eigen split is one of the famous data
split methods, dividing the training and test data for the
comparison of the learning-based depth prediction. It divides
the dataset into the training data (33 videos containing 23,488
images) and the test data (697 images).

FIGURE 11. The overview of the experiment overlapped on the floor plan.

FIGURE 12. The top-down view of the predicted trajectories of the
experiment. (·) next to the method denotes the training data for the
deep-learning-based method or the operating data for the classical
navigation: (SI) is stereo sequence with IMU measurements, (S) is stereo
sequence, (MI) is monocular sequence with IMU measurements and
(M) is monocular sequence. The method with [LC] has loop closing ability.
For monodepth2 (M), because no scale is estimated, the scale is taken
from ORB-SLAM3 (SI) as in (38). Each trajectory is aligned by fixing the
initial point at origin.

For quantitative analysis, we calculate the performance
indices based on the ground-truth depth from Velodyne
points for each test image. Since the Velodyne points pro-
vide sparse depth, we compare the pixels whose depth is
available.

Table 2 shows the depth prediction performance of the
proposed algorithm and state-of-the-art algorithm. The pro-
posed method is less accurate than the state-of-the-art meth-
ods. However, it should be noted that the proposed method
runs on monocular sequences with IMU measurements,
which can be more easily collected than the stereo meth-
ods. Furthermore, the proposed method can predict the
scale, which cannot be done by self-supervised monocular
methods.

Fig. 6 shows the scale prediction result from the predicted
depth. In this figure, the scale can be predicted by the pro-
posed method and monodepth (S) that is the self-supervised
stereo method. On the other hand, the self-supervised
monocular methods, i.e., monodepth2 (M) and sfm-learner
(M), cannot estimate the scale.
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FIGURE 13. The depth prediction result of the experiment. The lidar data are interpolated using bilinear interpolation, and monodepth2 is trained by the
authors’ provided code. (·) next to denotes the training data: (S) is stereo sequence, (MI) is monocular sequence with IMU measurement and (M) is
monocular image. For monodepth2 (M), because no scale is estimated, the scale is taken from LiDAR as in (33). The geometric information of each frame
is expressed in Fig. 11.
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Fig. 7 shows the depth map predicted from a single image.
In this figure, the results of the proposed method, mon-
odepth2 (M) and monodepth (S) correctly capture cars, trees,
buildings, etc. In addition, they are qualitatively similar to the
ground-truth color. Here, it should be noted that monodepth2
(M) and sfm-learner (M) yield no scale information, so the
scale used in those methods is taken from the grond-truth
depth. On the other hand, no ground-truth information is
given to the proposed method and monodepth2 (S).

F. POSE PERFORMANCE VALIDATION
We test the pose prediction in the KITTI odometry dataset.
The odometry 00-08 containing 19,600 images are used as
the train data, and 09-10 containing 2,790 images are used
as the test data. In this paper, odometry 03 is dropped since
high-frequency IMU data is not provided.

In Table 3, the proposed method shows comparable per-
formance to other state-of-the-art methods, considering that
self-supervised monocular methods and classical monocular
visual navigation methods cannot predict the scale, so the
scale from the ground-truth pose was used.
Fig. 8 shows the top-down view of the predicted result.

Since some classical methods provide no odometry infor-
mation at the first step, we discard first few frames for fair
comparison. The proposed method shows reasonable perfor-
mance when compared with other methods, especially deep-
learning-based methods.

When we focus on the beginning of the trajectory,
VINS-MONO [9] shows poor performance before 5 seconds
as in Fig. 9, perhaps due to the IMU initialization issue. For a
car-driving case like the KITTI dataset, it is difficult to initial-
ize IMU with a monocular camera because the motion of the
vehicle is homogeneous. For this reason, the error of VINS-
MONO is large in the beginning, and ORB-SLAM3 [8] with
the monocular-inertial mode fails in this example.

G. EXPERIMENT
We experiment using a vehicle in an indoor environment
as in Fig. 10. We employ a single monocular camera and
IMU sensor during both the training and inference step for
the proposed method. The vehicle is also equipped with a
stereo camera, IMU andLiDAR sensors used for performance
validation. In detail, two mvBlueCOUGAR cameras capture
monotonic images at 10Hz to construct a stereo system, Lord
Microstrain 3DM-GX3-25 attitude heading reference system
(AHRS) provides angular velocity and acceleration data at
250 Hz and Velodyne VLP-32C Ultrapuck gives the point
clouds of the surroundings at 10 Hz.

We drove the vehicle in the underground parking area of
Seoul National University, building 39, and collected four sets
of training data. Each dataset contains 1,000-1,600 images
for approximately two minutes, with total 6,233 images for
training and 870 images for inference. Fig. 11 shows the
overview of the experiment. To evaluate the performance
of the proposed method, we generate the depth map using
the LiDAR measurement and the trajectory of the vehicle

using stereo visual-inertial SLAM by ORB-SLAM3 [8]. The
obtained trajectories are plotted onto the floor plan of the
building for qualitative evaluation.

Fig. 13 shows the depth prediction result of the proposed
method andmonodepth2 provided by the authors of [7]. Since
monodepth2withmonocular training denoted asmonodepth2
(M) cannot predict the metric scale, we take the metric scale
from the LiDAR measurement as in (33). The proposed
method can predict geometric information such as pillars at
12-40 seconds, cars at 10 seconds, exits at 72-87 seconds
and walls like monodepth2. The proposed method predicts
the scale from monocular images and IMU measurements,
but monodepth2 needs stereo images during the training step,
otherwise it cannot predict the scale information.

Fig. 12 shows the pose prediction result of the pro-
posed method, monodepth2 [7], VINS-MONO [9] and
ORB-SLAM3 [8]. For VINS-MONO and ORB-SLAM3,
we perform monocular visual-inertial navigation with and
without a loop closing module. Additionally, we per-
form stereo visual-inertial navigation using ORB-SLAM3 to
obtain an accurate trajectory of the vehicle. For monodepth2
with monocular training denoted as monodepth2 (M), the
scale is taken from the stereo visual-inertial SLAM trajec-
tory denoted as ORB-SLAM3 (SI) as in (38). The proposed
method shows more accurate attitude estimation results than
monodepth2 because by utilizing IMU sensor, which is com-
monly available in many platforms these days. Although the
proposed method shows drifts at the end of the trajectory,
it shows a competitive result compared with classical monoc-
ular visual-inertial navigation methods until the middle of the
trajectory.

VI. CONCLUSION
In this paper, we propose self-supervised monocular depth
estimation and odometrywhich addresses the scale ambiguity
issue with raw IMUmeasurements. We design the loss func-
tion and network architecture to learn the scale information
from IMUmeasurements. We show that the proposed method
provides the estimated scale with comparable performance
in the KITTI dataset and the additional experiment using an
actual vehicle.

The proposed method adopts the state-of-the-art monocu-
lar self-supervised depth prediction and odometry and han-
dles the IMU measurements to obtain scale-aware depth and
pose, keeping the advantage of monocular self-supervision.
Thus, the performance of the proposed method depends on
that of the employed monocular depth estimation algorithm.
We expect that the performance will be enhanced if the recent
algorithm is adopted.

In addition, we propose seven additional loss functions,
including the regularization loss functions, so the number of
hyperparameters to balance the loss function terms increases
from one to eight. Loss balancing is an important issue to
achieve satisfactory performance. In this paper, we intuitively
balanced the loss functions, but proper loss balancing can
further increase the quality of the proposed method.
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The proposed method, like self-supervised monocular
methods, can train the network using the same type of data
used for the inference, i.e., the proposed method can train
from the data collected during the inference. This suggests
the possibility to extend the proposed method to the online
learning framework, in which the robot/vehicle learns the
surrounding environments by itself during the inference step
without additional device setup. This characteristic can help
improve the estimation performance especially when the
robot confronts new environments.
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