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Abstract: Commercial visual–inertial odometry (VIO) systems have been gaining attention as cost-
effective, off-the-shelf, six-degree-of-freedom (6-DoF) ego-motion-tracking sensors for estimating
accurate and consistent camera pose data, in addition to their ability to operate without external
localization from motion capture or global positioning systems. It is unclear from existing results,
however, which commercial VIO platforms are the most stable, consistent, and accurate in terms of
state estimation for indoor and outdoor robotic applications. We assessed four popular proprietary
VIO systems (Apple ARKit, Google ARCore, Intel RealSense T265, and Stereolabs ZED 2) through
a series of both indoor and outdoor experiments in which we showed their positioning stability,
consistency, and accuracy. After evaluating four popular VIO sensors in challenging real-world
indoor and outdoor scenarios, Apple ARKit showed the most stable and high accuracy/consistency,
and the relative pose error was a drift error of about 0.02 m per second. We present our complete
results as a benchmark comparison for the research community.

Keywords: visual navigation; visual–inertial odometry; Apple ARKit; Google ARCore; VIO

1. Introduction

Visual–inertial odometry (VIO) is the process of determining the position and ori-
entation of a camera and inertial measurement unit (IMU) rig in 3D space by analyzing
the associated camera images and IMU data from the visual–inertial sensors. It is one
of the fundamental building blocks for 6-DoF ego-motion estimation in a variety of do-
mains [1–4], including autonomous vehicles and virtual and augmented reality (VR/AR).
VIO approaches are popular choices for producing labeled training data of 6-DoF camera
poses when developing neural inertial navigation algorithms [5–7] due to their ability to
operate without a motion capture system or laser tracker. As the VIO research has reached a
level of maturity, there exist several open and published VIO methods, such as MSCKF [8],
OKVIS [9], and VINS-Mono [10], and many commercial products utilize closed and pro-
prietary VIO algorithms, such as Apple ARKit [11] and Google ARCore [12], which offer
off-the-shelf VIO pipelines that can be employed on an end-user’s system of choice. VIO
sensors are essential for various experimental environments that require 6-DoF motion
tracking, and many engineers and researchers have tried to find appropriate and feasible
VIO sensors and algorithms for their robotic systems and applications.

Recent research has provided some comparative experiments on the performance of
popular VIO approaches, but the authors only considered a subset of the existing open-
source and proprietary VIO algorithms and conducted insufficient performance evaluations
on only publicly available datasets, rather than challenging real-world indoor and outdoor
environments. In particular, although commercial VIO sensors (Intel T265, Stereolabs ZED
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2) have played an important role in several DARPA challenges [13,14] and many commer-
cial products or apps (Pokémon GO, IKEA Place AR), there is a lack of research for the
benchmarking of the positioning accuracy of these closed and proprietary VIO platforms.

The motivation of this paper is to address this deficiency by performing a comprehen-
sive evaluation of off-the-shelf commercially available VIO sensors in challenging indoor
and outdoor environments, as shown in Figure 1. This is the first comparative study on
four popular proprietary VIO sensors in six challenging real-world scenarios, both indoors
and outdoors. In particular, we selected the following four proprietary VIO systems, which
are frequently used in 6-DoF motion-tracking problems:

• Apple ARKit [11]—Apple’s augmented reality (AR) platform, which includes filtering-
based VIO algorithms [15] to enable iOS devices to sense how they move in 3D space.

• Google ARCore [12]—Google’s AR platform that utilizes a multi-state constraint
Kalman filter (MSCKF)-style VIO algorithm [8,16], which is called concurrent odome-
try and mapping (COM) [17].

• Intel RealSense T265 [18]—a stand-alone VIO and simultaneous localization and
mapping (SLAM) tracking device developed for use in robotics, drones, and more,
with all position computations performed on the device.

• Stereolabs ZED 2 [19]—a handheld stereo camera with a built-in IMU for neural depth
sensing and visual–inertial stereo; it requires an external NVIDIA GPU to obtain the
6-DoF camera poses.

Our key contribution is the qualitative and quantitative evaluation of four popular
commercial VIO sensors in challenging real-world 6-DoF motion-tracking scenarios, which
have not been performed in previous papers. We focus on commercial off-the-shelf VIO
sensors that might be easy to use and of interest to more researchers and engineers because
the open-source VIO methods that have been published [2,10,20,21] are relatively difficult to
understand and operate, and comparisons thereof have been made in the literature [1,22–24]
to some extent. We do believe that our scientific contributions will be of great help to
researchers and engineers seeking appropriate and feasible VIO sensors for their robotic
systems and applications.

Our experiments were conducted in six challenging indoor and outdoor environ-
ments with a custom-built test rig equipped with the four VIO sensors, as illustrated
in Figures 1 and 2. Our test sequences contained long and narrow corridors, large open
spaces, repetitive stairways, an underground parking lot with insufficient lighting, and
about 3.1 km of a vehicular test in a complex urban traffic environment. In order to further
increase the reliability and credibility of our experiments and conclusions, we performed ad-
ditional comparative experiments with the ground-truth trajectories from OptiTrack motion
capture systems.figure_capture_rig.pdf

Google ARCore
(LG V60 ThinQ)

Apple ARKit
(iPhone 12 Pro Max)

Intel RealSense T265

Stereolabs ZED 2

Figure 1. The custom-built rig for benchmarking the 6-DoF motion-tracking performance of four
visual–inertial (VI) sensors: Apple ARKit (iPhone 12 Pro Max), Google ARCore (LG V60 ThinQ), Intel
RealSense T265, and Stereolabs ZED 2.
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Figure 2. Accumulated 3D point cloud (middle) with the estimated 6-DoF trajectory (red) from
Apple ARKit in multi-floor environments. We captured the 6-DoF camera poses and 3D points while
climbing the multi-story stairs (left). Among the four proprietary VIO systems, Apple ARKit showed
the most consistent and accurate 6-DoF motion-tracking results, as it consistently reconstructed the
3D geometry of stairs and hallways. The track (red) and 3D reconstruction results of Apple ARKit
had a similar shape to that of the ground-truth blueprint of the building (right).

2. Related Work

Despite proprietary VIO sensors being utilized in many products and areas for indus-
trial usage (e.g., for building an accurate indoor map, as a precise positioning system, etc.),
there is no benchmark study that satisfies our proposed goals. While comprehensive com-
parisons of open-source VIO methods that have been published exist [1], they focused only
on the evaluation of popular academic VIO algorithms on the EuRoC micro aerial vehicle
dataset [25] and did not cover off-the-shelf proprietary VIO sensors and various indoor and
outdoor environments. Although ADVIO [26] presented a VIO comparison that included
three proprietary platforms and two academic approaches, its main contribution was the
development of a set of RGB and IMU smartphone datasets, not a performance evaluation
among proprietary VIO sensors. In [27–29], some comparative studies of proprietary VIO
sensors were performed, but they considered only a few proprietary VIO platforms and
focused only on the evaluation of the performance of 2D planar camera movements in a
simple indoor environment with no height changes. A performance evaluation was only
conducted in a simple 2D indoor environment with a short camera moving distance.

Since we are focused on the 6-DoF positioning accuracy of proprietary VIO sensors, we
can instead consider the existing results that are relevant to this problem. The VIO approach
proposed in [30] was compared to Google ARCore and VINS-Mono [10], but only on a
few indoor sequences with very little camera movement. In [24], ARCore, ARKit, and T265
were qualitatively compared with the proposed VIO method only on non-public and simple
2D planar datasets. The evaluation framework in [31] assessed the 6-DoF motion-tracking
performance of ARCore with the ground truth under several circumstances, but they lacked
comparative results for other proprietary VIO systems, such as ARKit and T265, and detailed
analyses were performed only for ARCore.

Most important is that no existing work considered an indoor/outdoor performance
evaluation for four popular proprietary VIO systems that are frequently deployed in robotic
applications, AR/VR apps, and industrial usages. Our test sequences are authentic and
illustrate realistic use cases, as they contain challenging environments that are both indoors
and outdoors with scarce or repetitive visual features and varying motions, from walking
to driving camera movements. They also include rapid rotations without translation, as
these are problematic motions for many VIO/SLAM algorithms. Our work is the first to
address this need.

3. Commercial Visual–Inertial Odometry Sensors

We briefly summarize the primary features of four off-the-shelf proprietary VIO
sensors based on data published on the relevant official websites, papers, GitHub, and
patent documents, as well as how the 6-DoF pose estimates are collected from each VIO
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mobile sensor. Since most proprietary VIO/SLAM platforms are closed-source, we do not
cover the detailed academic backgrounds and implementations of VIO.

3.1. Apple ARKit

Apple ARKit [11] is Apple’s augmented reality (AR) software framework, and it
includes a tightly coupled filtering-based VIO algorithm that is similar to the MSCKF [8]
in order to enable iOS devices to sense how they move in 3D space. It contains a sliding-
window filter, bundle adjustment, and motion/structure marginalization modules [15],
and it is expected to be applied to various robotic applications, such as the Apple Glasses
and Car, in the future, and is not just for the iPhone and iPad, which is why we conducted
vehicle tests in this benchmark. We developed a custom iOS data collection app (https:
//github.com/PyojinKim/ios_logger, accessed on 19 October 2022) for capturing ARKit’s
6-DoF camera poses, RGB image sequences, and IMU measurements by using an iPhone 12
Pro Max running iOS 14.7.1. This saved the pose estimates as a translation vector and a
unit quaternion at 60 Hz, and each pose was expressed in a global coordinate frame created
by the phone when starting iOS data collection. Although there are various iPhone and
iPad models, the core VIO algorithm in ARKit is the same; thus, we empirically confirmed
that there is little difference in the VIO performance of each device.

3.2. Google ARCore

ARCore [12] is Google’s platform for building AR experiences by utilizing multi-state
constraint Kalman filter (MSCKF)-style VIO/SLAM algorithms [16,32] with many subsequent
variations, which is called concurrent odometry and mapping (COM) [17]. ARCore is a
successor to Google Project Tango [33], and it is currently applied only in Android OS
smartphones, but it will be extended to various robotic platforms, such as Google Wing,
Maps, and Waymo, which is why we evaluated ARCore in a large-scale outdoor sequence
of about 3.1 km in a vehicular test. We built a custom Android OS app based on Google’s
ARCore example (https://github.com/rfbr/IMU_and_pose_Android_Recorder, accessed on
19 October 2022) to acquire ARCore’s 6-DoF camera poses and IMU measurements at 30 Hz
with an LG V60 ThinQ running Android 10.0.0 and ARCore 1.29. Although there are various
Android OS devices, such as the Samsung Galaxy and Google Pixel, smartphones on the
list (https://developers.google.com/ar/devices, accessed on 19 October 2022) certified by
Google demonstrate similar motion-tracking performance regardless of the device model.

3.3. Intel RealSense T265

Intel RealSense T265 is a hassle-free stand-alone VIO/SLAM device that tracks its own
position and orientation in 3D space. The embedded processor, a vision processing unit
(VPU), runs the entire VIO algorithm onboard, analyzes the image sequences from stereo
fisheye cameras, and fuses all sensor information together. Since the T265 VIO algorithm
runs on the device itself without using the resources of a host computer, it is widely used
as a 6-DoF positioning sensor in 3D space for various robotic applications, such as DARPA
challenges [13] and autonomous flying drones [34]. We collected the 6-DoF motion tracking
results at 200 Hz by using Intel RealSense SDK 2.0 (https://github.com/IntelRealSense/
librealsense, accessed on 19 October 2022) and saved the T265’s 6-DoF camera poses by
connecting it to an Intel NUC mini-PC.

3.4. Stereolabs ZED 2

Stereolabs ZED 2 is a handheld stereo camera with a built-in IMU for neural depth
sensing, 6-DoF VIO/SLAM, and real-time 3D mapping. Stereolabs has not made their
VIO/SLAM algorithm public, and the description of the VIO algorithm is relatively vague
compared to those of other proprietary VIO systems. It is a popular stereo camera sensor
for various robotic applications, such as drone inspection [35], but it has the disadvantage
of requiring an external NVIDIA GPU to perform positional tracking and neural depth
sensing. We developed a program to collect the ZED 2 6-DoF camera poses at 30 Hz based
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on ZED SDK 3.5.2 (https://www.stereolabs.com/developers/release/, accessed on 19
October 2022) on an NVIDIA Jetson Nano onboard computer.

4. Experiments

We both qualitatively and quantitatively evaluated the four proprietary VIO sensors
with the four devices (iPhone 12 Pro Max, LG V60 ThinQ, Intel T265, ZED2) attached to a
custom-built capture rig, as shown in Figure 3, in large-scale and challenging indoor and
outdoor environments. Indoors, we recorded the motion data with a walking person, and
outdoors, the data were collected by rigidly attaching the capture rig to a car, as shown in
Figure 3. We saved the 6-DoF pose estimates of ARKit and ARCore through the custom
apps on each smartphone device, and we recorded the moving trajectories of T265 and
ZED2 in the Intel NUC and NVIDIA Jetson Nano onboard computers. We maintained the
default parameter settings of each VIO sensor and deactivated all capabilities related to
SLAM (e.g., loop closure) for a fair comparison of each VIO system. Furthermore, in order to
interpret the motion-tracking results in the same reference coordinate frame, we calibrated
the intrinsic and extrinsic camera parameters of all four VIO sensors by capturing multiple
views of a checkerboard pattern [26,36], as shown in Figure 4. Given the checkerboard
images that were taken with each VIO sensor, we obtained intrinsic and extrinsic calibration
parameters by using MATLAB’s built-in camera calibration toolbox.

figure_external_view.pdf

Apple 
ARKit

Battery

Google 
ARCore

Intel
T265

ZED 2 Intel NUC
& NVIDIA

Jetson Nano

Laptop

Stereolabs
ZED 2

Google
ARCore

Apple ARKit

Intel RealSense T265

Figure 3. We carried the custom-built capture rig by hand and stored the computers and batteries to
collect the indoor 6-DoF motion data from the VI sensors (left). In the outdoor vehicular tests, we
fixed the capture rig to the front passenger seat (right).

figure_revision_extrinsic_calibration.pdf

Figure 4. Intrinsic and extrinsic calibration of all cameras. We calibrated the intrinsic and extrinsic
camera parameters of the four tested VIO sensors by capturing multiple views of a checkerboard. We
utilized MATLAB’s built-in camera calibration toolbox and visualized the custom-built sensor rig
with orientations of all four VIO sensors.

Our benchmark dataset contained various indoor and outdoor sequences in six different
locations, and the total length of each sequence ranged from 83 to 3051 m; this was primarily

https://www.stereolabs.com/developers/release/


Sensors 2022, 22, 9873 6 of 14

designed for the benchmarking of medium- and long-range VIO performance. There were
three indoor and three outdoor sequences, and all indoor sequences were captured in a seven-
story building in the university campus; it included long corridors, open hallway spaces,
and stair climbs, as shown in the top row of Figure 5. The indoor cases were as realistic as
possible; they contained repetitive motion on stairs, temporary occlusions, and areas lacking
visual features. The bottom row of Figure 5 illustrates example frames from three outdoor
sequences that were acquired outdoors on the university campus, in underground parking
lot, and on urban roads. In order to quantitatively evaluate the performance of each VIO
system without an external motion capture system, we had the start and end points of the
movement trajectories in all experiments coincide, and we measured the final drift error
(FDE) metric, which was the end-point position error in meters. We report the quantitative
evaluation results of the four VIO sensors in Table 1. The smallest end-point position error
for each sequence is indicated in bold. The ideal FDE value (the ground-truth path) should
be 0, and a large FDE value denotes an inaccurate position estimate, since we define the
starting point of the movement as the origin. In addition, by overlaying the estimated VIO
trajectories on the floor plan of the building or Google Maps, we qualitatively evaluated the
consistency, stability, and reliability of each VIO system.

figure_example_frames.pdf

(a) Indoor Corridor (b) Indoor Hallway (c) Indoor Stairs

(d) Outdoor Campus (e) Underground Parking Lot (f) Urban Outdoor Roads

Figure 5. Example images from the indoor and outdoor benchmark datasets. The top row presents
three indoor sequences that were traversed by foot, which included long corridors (a), open hallway
spaces (b), and repetitive stairs (c) in a university building. We acquired the camera motion data on
the outdoor campus on foot (d) and in a car in an underground parking lot (e) and on urban outdoor
roads (f).

Table 1. Evaluation results (FDE) of the four proprietary VIO sensors.

Experiment ARKit ARCore T265 ZED 2 Length (m)

Indoor Corridor 0.79 0.12 1.88 1.44 145.21
Indoor Hallway 0.14 0.09 0.61 4.58 83.98

Indoor Stairs 0.19 3.98 1.49 4.76 114.13

Outdoor Campus 2.01 0.07 4.08 206.38 513.81
Parking Lot 0.26 1.14 9.01 10.85 446.26

Outdoor Roads 2.68 140.08 × 409.25 3051.61

4.1. Long Indoor Corridors and Open Hallways

We evaluated the four VIO sensors in a long U-shaped corridor and in open hall-
way spaces that are easily found in typical office and university buildings, as shown in
Figure 6. Figure 5a,b illustrate example frames from both locations. The trajectories of these
sequences were approximately 145 and 84 m, and they included 5 and 11 pure rotational
movements and difficult textures. The left side of Figure 6 shows the trajectories of the
6-DoF motion-tracking results with the four VIO sensors with movements that went from
end to end of a long U-shaped corridor and then returned back to the starting point. The
180◦ turn gauged the ability of VIO algorithms to handle rotations in the yaw direction. The
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right side of Figure 6 shows the trajectories of a large turn along the wall, which included
many rotations in place in an open hallway space.

Figure 6. Trajectories estimated by the four proprietary VIO systems in the long U-shaped corridor
(left) and open hallway space (right) sequences. We started and ended at the same point, which is
marked with a black circle, to evaluate the loop-closing performance of the tested commercial VIO
systems. The 90◦ and 180◦ turns gauged the ability of the VIO algorithms to handle rotations in the
yaw direction. The estimated paths for ARKit (red) matched the building floor plan most consistently,
and only the starting and ending points of ARKit nearly met; for the others, they did not.

In the long U-shaped corridor and open hallway sequences, the start and end points of
ARKit (red) met at the black circle without a severe rotational drift, while the orthogonality
and scale of the estimated trajectory were well maintained in comparison with the floor
plan. Although ARCore (green) showed the most accurate results in terms of the FDE
metric, as shown in Table 1, the estimated VIO trajectory did not match the floor plan well.
Intel T265 (blue) estimated accurate 3-DoF rotational motion well, but there was a problem
with the scale of the moving trajectory in comparison with the floor plan, as it showed a
slightly larger trajectory than the actual movements. ZED2 (magenta) presented the most
inaccurate and inconsistent positioning performance among the four VIO methods, as the
rotational motion drift error gradually accumulated over time. Overall, the VIO trajectories
estimated by ARKit (red) were the most similar and consistent motion tracking results with
respect to the actual movements that followed the shape of the corridor on the floor plan.

4.2. Indoor Multi-Story Stairs

We performed a comparative experiment in a multi-floor staircase environment with
a 114 m trajectory going up the stairs from the second basement floor (B2) to the fifth
floor (5F) of a building, as shown in Figure 7. The repetitive rotational motion included
in the 3D trajectory of climbing the stairs made VIO positioning challenging. Figure 5c
shows example frames from the multi-story stair sequence. In the top view (xy-plane),
we started and ended at the same points marked in the black circle to check the loop
closing in the estimated VIO trajectories. ARKit (red) had the best performance; the top and
side views of ARKit (red) show the overlapped, consistent 6-DoF motion-tracking results,
while other VIO systems gradually diverged from the initially estimated loop. With ARKit
(red), the starting and ending points in the xy-plane (top view) nearly matched; for the
others, they did not. The final drift error (FDE) of ARKit in the xy-plane was 0.19 m, while
those of ARCore, T265, and ZED2 were 3.98, 1.49, and 4.76 m, respectively. In particular,
ZED2 (magenta) had the most severe trajectory distortion in the z-axis direction (height)
among the four VIO systems. Figure 7 illustrates the side and front views of the stairway
with the paths from the four VIO devices, showing the high consistency of ARKit (red)
compared to that of the other VIO platforms. It is noteworthy that the height of each floor
estimated by ARKit and the actual height (the ground truth) from the building blueprint
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were approximately identical. Please refer to the Video S1 clips submitted with this paper
showing more details about the experiments.

Figure 7. Comparison of the four VIO systems on multi-story stairs from the second basement floor
(B2) to the fifth floor (5F). The side (left), front (bottom right), and top (top right) views of the estimated
VIO trajectories are shown. ARKit had the camera motions that were most consistent with the shape of
the stairs, and it only matched the start and end points, which are marked in the black circle.

4.3. Outdoor University Campus

We chose an outdoor location in the university campus with a length of approximately
513 m to determine which VIO system worked well in an environment with a rapid change in
the topography, in addition to a narrow returning road, as shown on the left side of Figure 8.
Example frames are shown in Figure 5d. The main purpose of choosing the university
campus was to evaluate which VIO sensor worked well in the daily life environments around
us, which are crowded with people and contain narrow roads and stairs. In addition, we
intentionally matched the starting and ending points and designed the moving trajectories
for the experiments by referring to Google Maps and the university campus map.
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The resulting 6-DoF trajectories from four VIO platforms are shown overlaid on Google
Maps, demonstrating that the start and end points of ARKit (red) and ARCore (green) met
while matching well with the shape of the roads shown on Google Maps. The shape of
the estimated trajectory of T265 (blue) was very similar to ARKit’s and ARcore’s results,
but the scale of the estimated path of T265 was smaller than the actual movements. T265
suffered from a scale inconsistency problem, which is generally observed in monocular
visual odometry configurations. The orthogonality of ZED2 (magenta) was broken due
to its inaccurate rotation estimation, showing the most severe distortion of the actual
movement trajectory among the four VIO systems, as shown on the left side of Figure 8.

Figure 8. Estimated motion trajectories of four proprietary VIO systems in the outdoor campus
(left) and urban outdoor roads (right) sequences overlaid on Google Maps. We started and ended at
the same point, which is marked in the black circle, to check the loop-closing performance. ARKit
(red) tracked the 6-DoF camera poses well, following the shape of the roads on Google Maps most
consistently and accurately. Only ARKit (red) was able to produce stable motion-tracking performance
even when driving a vehicle over 60 km/h (right).

4.4. Outdoor Urban Roads and Parking Lot

We performed an outdoor vehicle driving experiment with a mileage of approximately
3 km by attaching the capture rig to a vehicle, as shown on the right side of Figure 8.
Figure 5e,f show example frames from the underground parking lot and urban outdoor
roads. We acquired motion data while driving on public automobile roads near Seoul Station
in Seoul, and there were plenty of moving people, cars, and, occasionally, large vehicles
that were visible in the outdoor environments, which made motion tracking with VIO
challenging. Even in high-speed driving conditions, sometimes exceeding 60 km/h, ARKit
(red) showed surprisingly accurate and consistent 6-DoF motion-tracking results when
overlaid on Google Maps, as shown on the right side of Figure 8. The start and end points of
ARKit (red) accurately met in the black circle, and the final drift error (FDE) was only 2.68 m,
as shown in Table 1. ARCore (green) occasionally failed when the speed of the car increased
or variations in the light abruptly occurred. In T265 (blue), if the car stopped temporarily due
to a stop signal or was driving too fast, the VIO algorithm diverged and failed to estimate
the location. ZED2 (magenta) accumulated rotational drift error over time, resulting in
inaccurate motion estimation results. While the four VIO systems performed relatively well
in the previous walking sequences, this was not the case in the more challenging vehicular
test, which was not officially supported by any of the tested VIO devices. Only ARKit was
able to produce stable motion-tracking results in the vehicular test.

We conducted an additional vehicular test in which the same trajectory was driven
repeatedly in a dark underground parking lot with poor visual conditions, as shown in
Figure 9. The total traveling distance was about 450 m, and we drove the car at a low speed,
from 5 to 15 km/h. Although ARKit did not perfectly restore the actual movements in
the parking lot, ARKit (red) showed overlapped and consistent motion estimation results,
while the other VIO systems gradually diverged from the initially estimated loop. Since we
performed the evaluation at a relatively low speed (10 km/h) compared to the previous
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vehicle test (60 km/h), the other VIO systems did not diverge or fail at all. Among the
four VIO methods, the positioning results of ZED2 are the most deviated from the actual
movements in the underground parking lot.

Figure 9. Example paths in the underground parking lot overlaid on the floor plan to evaluate the con-
sistency and accuracy. The trajectories of ARKit (red) overlapped significantly, but the paths of the other
VIO devices suffered from a rotational drift, showing inaccurate and inconsistent positioning results.

4.5. Ground-Truth Comparison with OptiTrack

We performed more comparison experiments with the actual moving trajectories (the
ground truth) of an iPhone device (ARKit) from an OptiTrack motion capture system, as
shown in Figure 10. We selected Apple ARKit in the iPhone 12 Pro Max as a VIO sensor
because it showed the most accurate positioning performance among the commercial
VIO sensors. We attached four reflective markers around the iPhone device to obtain the
ground-truth moving trajectories in 3D space from OptiTrack motion capture systems.

True PositionARKit Position

Ground Computer OptiTrack Computer

OptiTrack CameraiPhone 12 Pro Max

OptiTrack

ARKit
Reflective 

Marker

figure_revision_ARKit_OptiTrack_setup.pdf

Figure 10. Experimental setup for the quantitative evaluation of ARKit. Four reflective markers
were attached to the iPhone device (ARKit) to obtain the ground-truth moving trajectories from the
OptiTrack motion capture systems. We acquired the true position of the VIO sensor platform in the
3D space and quantitatively evaluated the positioning accuracy of Apple ARKit.

We first defined rectangle-, circle-, triangle-, and star-shaped trajectories for the quali-
tative and quantitative evaluations and repeatedly moved along them for ‘multiple-loop’
trajectories, as shown in Figure 11. We collected the estimated (ARKit) and ground-truth
(OptiTrack) trajectories in closed-loop sequences in which the starting and end points
coincided. Figure 11 shows that the estimated trajectories (red) obtained from Apple ARKit
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were almost similar to the actual moving trajectories (black). In particular, due to the very
small drift error in ARKit, the starting and end points were almost identical even after
several turns of the multiple closed-loop trajectories. We measured the root mean squared
error (RMSE) of the relative pose error (RPE) [37] and the final drift error (FDE) metric,
and we present the quantitative evaluation results in Table 2. Both the qualitative and
quantitative experimental results show that Apple ARKit was the most accurate among
the four tested VIO sensors, and there was little difference when it was compared with the
ground-truth trajectories.

Table 2. Quantitative evaluation results for Apple ARKit.

Experiment Relative Pose Error (RPE) (m/s) Final Drift Error (FDE) (m) Length (m)

Rectangle 0.02 0.09 50.46
Circle 0.02 0.02 68.69

Triangle 0.04 0.26 58.94
Star 0.03 0.17 61.84

figure_revision_ARKit_OptiTrack_traj_all.pdf

Figure 11. VIO sensor trajectories with ARKit (red) and the ground truth (black). The red and black
lines represent the estimated and ground-truth trajectories from ARKit and the OptiTrack motion
capture systems, respectively. The true trajectories (black) and the trajectories estimated with Apple
ARKit (red) overlapped significantly.

5. Discussion

Overall, Apple ARKit demonstrated the most consistent, accurate, reliable, and stable
motion-tracking results among the four VIO systems across both indoor and outdoor uses.
ARKit performed well and robustly in various challenging real-world environments, such as
environments with sudden camera movements, abrupt changes in illumination, and high-
speed movements, with very rare cases in which tracking failure or motion jump occurred.
ARKit achieved accurate and robust positioning performance in realistic use cases that were
crowded with people and vehicles and were not only indoors, but also outdoors.

Google ARCore exhibited accurate and consistent motion-tracking performance next
to ARKit. ARCore worked well for indoor sequences and the motion data collected by a
walking person, but it diverged or the VIO algorithm deteriorated sharply when moving
rapidly or in poor lighting conditions.

Intel RealSense T265 showed good positioning performance that was just behind
that of Google ARCore. T265’s operation of 6-DoF indoor motion tracking was not bad,
but it had a problem with a scale inconsistency issue when estimating moving paths that
were larger or smaller than the scale of the actual movements. In addition, T265’s motion
tracking sometimes failed if the moving speed was too slow or fast.

The motion-tracking performance of Stereolabs ZED 2 was the most inconsistent
and inaccurate among the four VIO devices, both indoors and outdoors. As the 6-DoF
motion tracking progressed, very severe rotational errors occurred, and these rotation errors
accumulated over time, resulting in an incorrect path in which the starting and ending
points were very different. In particular, ZED2 exhibited a tendency in which it could not
correctly track a straight path when it was actually moving in a straight line outdoors, and
the rotational drift error was more severe when moving fast.

We summarized the economic data and other important characteristics for each pro-
prietary VIO sensor, as shown in Table 3. We collected the data in Table 3 based on the
official website of each VIO sensor and the experimental results in our paper.
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Table 3. Economic comparison of the four commercial VIO sensors.

VIO System Update Rate Price (USD) Pose Accuracy Compatibility System Requirements

ARKit ∼ 60 Hz $429 ∼ +++ + iOS (A9 and up)
ARCore ∼ 60 Hz $449 ∼ +++ + Supported Devices 1

T265 200 Hz $329 ++ +++ Single-Board Computer 2

ZED2 100 Hz $449 + ++ NVIDIA GPU 3

1 https://developers.google.com/ar/devices, accessed on 19 October 2022. 2 Since T265 computes all motion-
tracking data on the device, the only hardware requirement is a USB connection that provides 1.5 W of power.
3 NVIDIA Jetson Nano, TX2, Xavier, etc.

Since Apple ARKit and Google ARCore are 6-DoF motion-tracking algorithms that are
designed for smartphone OSs (iOS, iPadOS, and Android), they operate only on specific
mobile devices that support the corresponding OS. Although they have the advantage of
being very accurate and stable, they lack compatibility and convenience in robot operating
systems (ROSs) and Linux environments. On the other hand, T265 and ZED2 have excellent
compatibility and convenience in ROSs and Linux environments that are used for various
embedded computers, but lack accuracy and stability compared to ARKit and ARCore.

6. Conclusions

We conducted a survey of the 6-DoF ego-motion-tracking performance of four propri-
etary off-the-shelf VIO sensors in challenging real-world indoor and outdoor environments.
To the best of our knowledge, this is the first back-to-back comparison of ARKit, ARCore,
T265, and ZED2, and it demonstrated that Apple ARKit performed well and robustly
in most indoor and outdoor scenarios. Apple ARKit showed the most stable and high
accuracy/consistency, and the relative pose error was about 0.02 m of drift error per second.
Although ARKit and ARCore have the advantage of being very accurate and stable, they
lack compatibility and convenience in robot operating systems (ROSs) and Linux environ-
ments. On the other hand, T265 and ZED2 have excellent compatibility and convenience
in ROSs and Linux environments that are used for various embedded computers, but
lack accuracy and stability compared to ARKit and ARCore. We hope that the results and
discussion presented in this paper may help members of the research community in finding
appropriate VIO sensors for their robotic systems and applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22249873/s1, Video S1: More details about the experiments.
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