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Abstract: We present bundle-adjusting Neural Radiance Fields (BARF) with motion priors. Neural Radiance Field
(NeRF) has opened up tremendous potential for neural volume rendering and 3D scene representations in recognition of
their ability to synthesize photo-realistic novel views. BARF mitigates NeRF’s reliance on accurate 6-DoF camera poses,
enabling scene learning with inaccurate camera poses. However, initializing estimates far from an optimal solution, such
as BARF, can easily fall into local minima. We utilize Visual-Inertial Odometry Motion Priors to the BARF, which jointly
optimizes 3D scene representations and camera poses, providing higher accuracy in view synthesis and a more stable
motion estimate. The proposed method achieves results that outperform original BARF in real-world data, demonstrating
the effectiveness of motion priors to knowledge use.
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1. INTRODUCTION
Image-based map construction is one of the fundamen-

tal goals in computer vision, robotics, AR and VR appli-
cations, and autonomous driving. Recently, coordinate-
based neural representations [1], [2], [3] have attracted
increasingly significant attention in this field. In particu-
lar, Neural Radiance Fields (NeRF) [4], which aim to ren-
der novel viewpoints of a scene given RGB images and
corresponding 6-DoF camera poses, have gained popular-
ity owing to their simplicity and powerful view synthesis
ability.

NeRF [4] learns 3D scene representation from im-
ages and encodes the entire volume space as a contin-
uous function parameterized by Multi-Layer Perceptron
(MLP). Although NeRF has tremendous potential for
view synthesis and 3D scene representation; however,
NeRF requires highly accurate 6-DoF camera positions,
which is an unrealistic condition. NeRF uses off-the-
shelf SfM algorithms such as COLMAP [5] to generate
accurate camera poses corresponding to given images.

Several works have proposed models to overcome
these limitations. Bundle-Adjusting Neural Radiance
Fields (BARF) [6] and NeRF−−[7] introduce methods
for estimating camera poses and training NeRF simulta-
neously, enabling novel view synthesis from imperfect or
even unknown camera poses. BARF and NeRF−− ini-
tialize all camera frames with identity matrices on real-
world scenes. Although these methods can jointly opti-
mize camera poses, NeRF network is sensitive to initial-
ization. Therefore, using the initial pose of real-world
data as an identity may result in optimized parameters
being trapped in local minima, not being an optimal so-
lution, and degrading view synthesis quality.
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Fig. 1. We propose a BARF-based framework using mo-
tion priors obtained from Apple ARKit as initial cam-
era poses.

To solve the problems mentioned, we propose NeRF
network and pose optimization technique using motion
priors. We obtain the motion priors from commercial li-
braries such as Apple ARKit [8], Apple’s visual-inertial
odometry (VIO) algorithm. We use them as initial pose
values for BARF (Fig. 1). There are two advantages to
using a good initial guess as an initial value for the opti-
mization process. First, the initialization of a good initial
guess prevents you from falling into the local minima.
Second, the initialization of a good initial guess enables
fast convergence. We demonstrate better and faster novel
view synthesis results and more stable pose estimation
results, outperforming the baseline BARF train with the
identity matrix. Additionally, we compare camera pose
estimation results with the ground-truth poses obtained
with the motion capture system, OptiTrack.

In summary, our contributions are as follows:
• We exploit good motion priors obtained from ARKit
as an initial value to jointly optimize view synthesis and
camera poses for complex scenes.
• We explore that the proposed method can successfully
recover high-fidelity view synthesis and poses for com-
plex scenes using good initials.

2. RELATED WORK
In contrast to traditional representations such as point

clouds, mesh, or voxels in 3D scene representations,
coordinate-based neural representations [2], [3] can more
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Fig. 2. An overview of BARF with motion priors from ARKit. We jointly optimize the camera 6-DoF poses and the
NeRF network. We set the motion priors from ARKit to the initial value of the camera poses and sample discrete
points {ti} along the direction d of the camera ray to render the color of pixel u on the image. Sampled 3D points
feed to NeRF through the smooth Positional Encoding γ and obtain Ĉ through volume rendering. Since the entire
pipeline is differentiable, we can jointly optimize 6-DoF poses and MLP together.

efficiently represent the complex scene and memorize 3D
information in space. This representation is widely used
in 3D reconstruction and novel view synthesis [4], [9],
[10].

Neural Radiance Fields (NeRF) [4] propose a differ-
entiable rendering method that learns neural represen-
tations from input images. It represents the underlying
3D scene using coordinate-based multi-layer perceptrons
(MLP). NeRF can produce unprecedented levels of realis-
tic view synthesis in challenging scenes, and the simplic-
ity and superior performance of the network have opened
up enormous potential for the presentation of the 3D
scene. However, this method relies heavily on accurate
camera poses. Although there are some tricky conditions
that it is possible only in a small range of forward-facing
scenes and takes a long optimization time, several stud-
ies have reduced the dependence on pre-calculated pose
information.

iMAP [11] is a real-time SLAM system that can ef-
ficiently store 3D information in space based on NeRF
MLP. iNeRF [12] proposes a novel pose estimation
method inverting the NeRF model given a well-trained
NeRF network. NeRF−− [7], Self-Calibrating Neural
Radiance Fields [13], and Bundle-Adjusting Neural Ra-
diance Fields (BARF) [6] jointly optimize camera poses
estimations and scene representations. These methods
train the NeRF network without camera poses; there is
no need for camera pose pre-calculation through the SfM
algorithm. However, pose optimization is limited to gen-
erally forward-facing scenes. GNeRF [14] achieves the
NeRF reconstruction problem in the unknown camera
poses by integrating Generative Adversarial Networks
(GAN) and NeRF, and pose optimization is also possible
in a wide range of 360-degree captures beyond forward-
facing. BARF conducts pose optimization by applying a
smooth mask using a weight proportional to the optimiza-
tion progress in positional encoding. BARF initializes the
poses as an identity rigid body transformation matrix for

real-world scenes. Initializing with identity without using
appropriate initial values may be stuck into suboptimal
rather than optimal solutions in optimization problems.
Here we propose a method to train the BARF by setting
motion priors from ARKit to the initial value of the poses.

3. PROPOSED METHOD

We build upon BARF, incorporating motion priors
from ARKit. Fig. 2 shows an overview of our method.
Our goal is to improve rendering quality while acceler-
ating rendering by applying self-captured data to BARF
using motion priors from ARKit. We briefly cover Neural
Radiance Fields [4] and BARF [6].

3.1 Neural Radiance Fields and BARF
NeRF [4] encodes 3D scenes with continuous neural

network function F parameterized by a multi-layer per-
ceptron (MLP) that maps input 3D location to RGB color
and volume density. The key is that because this function
is differentiable, MLP can optimize by minimizing the
photometric error between the ground-truth images and
the synthesis images. FΘ : (x,d) → (c, σ) maps loca-
tion x ∈ R3 in 3D space and viewing direction d ∈ R2 to
radiance color c ∈ R3 and volume density σ ∈ R. Θ in-
dicates MLP networks weight. This architecture ensures
a non-Lambertian effect because it considers viewing di-
rections d. To render the color of the pixel u ∈ R2 on the
image, casting ray r(t) = o + td passing through pixel
u in direction d from camera center o along the cam-
era ray. Given near and far bounds in the ray, sampling
discrete N points {ti}Ni=1 along the ray r(t) with lengths
δi = ti+1 − ti. Each sampled 3D point is fed into the
MLP. The expected color Ĉ(r) of r(t) is is :

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, (1)
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Fig. 3. We can reach the optimal solution by performing
optimization with good initial camera poses. On the
other hand, because BARF initializes to identity, it
can easily fall into local minima.

where

Ti = exp

−
i−1∑
j=1

σiδi

 (2)

In contrast to the original NeRF, BARF jointly op-
timizes camera poses and rendering results by setting
the initial camera pose as identity transformation. So
BARF is interested in finding 3D scene representations
and solving accurate camera poses simultaneously. In
other words, BARF parameterizes the camera pose p,
minimizes the photometric error in input pixels given
{Ii}Mi=1, and optimizes the camera poses {pi}Mi=1 corre-
sponding to each image.

min
p1,...pM ,Θ

M∑
i=1

∑
u

∥∥∥Î(u; pi,Θ)− Ii(u)
∥∥∥2
2

(3)

The camera pose p is as a transformation matrix [R|t]
in SE (3), where R ∈ SO(3) indicates the camera rota-
tion and t ∈ R3 indicates the translation. As mentioned
earlier, BARF initializes all camera rotation R as iden-
tity matrix and translation t as zero vectors, i.e., the input
camera frames are located in origin and look at the -z-
axis. However, we incorporate motion priors into BARF
to initialize with poses acquired through ARKit.

3.2 Positional Encoding
Positional Encoding is an essential component that

makes NeRF high-fidelity synthesis possible. Positional
Encoding γ(p) maps the input pose p to the higher di-
mensional space before being fed to the MLP network.
The encoding function with L frequency bases is defined
as:

γ(p) = [p, γ0(p), γ1(p), ..., γL − 1(p)] (4)

Applying naively Positional Encoding to BARF makes
joint optimization difficult to update effectively and con-
sistently. Therefore, BARF presents a simple but effec-
tive strategy to control various frequency components,
applying a smooth mask to positional encoding via α ∈

Scene Camera pose optimization
Rot (°) ↓ Trans (m)↓

BARF Ours BARF Ours
Fan 9.022 0.683 0.117 0.008
Truck 7.731 0.380 0.55 0.002

Table 1. Quantitative results of optimized camera poses.
We report the difference between ground truth poses ob-
tained from OptiTrack and optimized camera poses.

[0, L] proportional to the optimization process. The
weight wk applied to each k-th frequency encoding com-
ponent is:

wk(α) =


0 if α < k
1−cos((α−k)π)

2 if 0 ≤ α− k < 1

1 if α− k ≥ 1

(5)

The k-th frequency component of γk is defined as:

γk(p;α) = wk(α) · [cos(2kπp), sin(2kπp)] (6)

Thus the Jacobian of γk becomes

∂γk(p;α)
∂p

= wk(α)·2kπ·[−sin(2kπp), cos(2kπp)] (7)

This wk enables only low-frequency components at the
start of the optimization process, allowing them to gen-
erate smooth signals. Then the higher frequency compo-
nents are gradually activated for high-fidelity view syn-
thesis.

3.3 BARF with Motion Priors
The BARF initializes all camera frames to the origin,

i.e., the rotation and translation movement are zero. How-
ever, we apply a good initial guess from Apple ARKit to
the optimization process to quickly converge the BARF
and significantly improve the rendering quality. ARKit is
one of the most accurate and stable VIO algorithms [15],
so we obtain the ARKit 6-Dof trajectory with the custom
iOS app [16].

The nonlinear optimization process is susceptible to
suboptimal solutions if poorly initialized (Fig. 3). In the
nonlinear optimization process, BARF, which uses the
identity matrix as the initial guess, may fall into the lo-
cal minima. Our model, with a good initial guess ob-
tained from ARKit, can optimize scene representations
and poses effectively without falling into local minima
during the optimization process [17]. We can also draw
results of higher rendering quality and enable stable pose
estimation.

4. EXPERIMENTS

We evaluate the proposed method by collecting train-
ing data from various forward-facing indoor scenes,
where the camera poses are known through ARKit.
ARKit is Apple’s software framework that includes a
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Fig. 4. Comparison of test-sets views for scenes from real-world data acquired with ARKit. We visualize the ground-

truth (GT) image, the synthesized image, and the predicted depth map. Our method can effectively optimize scene
representations and poses compared to the BARF [6] and NeRF−− [7], allowing us to recover details of an object
such as the Piano data. BARF cannot incur high-fidelity reconstructions and depth estimations owing to incorrect
pose convergence. View rendering is only possible in places with slight camera movements, such as the Computer
or Trashcan data. Similarly, as in the Lounge and Stair1 data, NeRF−− also diverges to poor synthesis and depth
estimation quality as the capture range increases.

VIO algorithm to produce Apple’s augmented reality
apps. We use the custom iOS app [16] to collect custom
data consisting of ARKit 6-Dof camera poses and RGB
images using iPhone 12 Pro Max running iOS 14.7.1.
with LiDAR sensors. We also evaluate the pose estima-
tion results using the pose information obtained from Op-
tiTrack, the motion capture system, as a ground truth. We
compare the proposed method with the original BARF [6]
and NeRF−− [7] in which all camera frames are initial-

ized with the identity matrix.
We measure quantitative performance regarding opti-

mized pose error and view synthesis quality. We fol-
low evaluation methods employed in the BARF, and
the de facto standard, widely used for evaluating view
synthesis results in the NeRF series. We report quan-
titative results based on the mean of Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Map
(SSIM) [18], and the Learned Perceptual Image Patch
Similarity (LPIPS) [19] perceptual metric to evaluate im-
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Scene Camera pose optimization View synthesis quality
Rot (°) ↓ Trans (m) ↓ PSNR ↑ SSIM ↑ LPIPS ↓

BARF Ours BARF Ours NeRF−− BARF Ours NeRF−− BARF Ours NeRF−− BARF Ours
Transhcan 15.2 2.274 0.196 0.029 8.58 12.37 23.61 0.4 0.53 0.81 0.8 0.71 0.25
Computer 9.613 1.411 0.086 0.008 8.19 16.19 28.24 0.35 0.65 0.9 0.73 0.52 0.13
Stair2 27.589 7.61 0.630 0.18 10.28 13.28 15.08 0.23 0.31 0.32 0.77 0.84 0.62
Hallway 13.946 4.561 0.136 0.016 14.47 11.12 22.67 0.56 0.52 0.81 0.55 0.77 0.25
Piano 21.301 4.452 0.480 0.064 9.11 9.03 18.41 0.2 0.26 0.56 0.74 0.88 0.35
Lounge 51.081 4.99 0.478 0.055 9.21 7.58 29.38 0.47 0.35 0.93 0.79 0.88 0.11
Stair1 21.865 3.405 0.120 0.016 9.0 11.56 20.55 0.22 0.24 0.49 0.79 0.87 0.43
Locker 32.938 1.17 0.265 0.017 8.26 12.69 29.06 0.21 0.52 0.9 0.95 0.84 0.12
Mean 24.191 3.734 0.298 0.048 9.637 11.727 23.375 0.33 0.422 0.715 0.765 0.788 0.282

Table 2. Quantitative comparison between our model and BARF and NeRF−− on real-world data acquired with ARKit.
Since ground-truth poses are not accessible in general indoor scenes, the pose accuracy was evaluated by calculating the
difference between optimized poses and poses acquired through ARKit. Our method can optimize for high-fidelity view
synthesis, and exact camera poses.

25,165

GT BARF Ours
Translation Error

(a) BARF (b) Ours

Fig. 5. Visual comparison of optimized camera poses
and OptiTrack GT poses in the Fan scene. The re-
sult of our method (right) demonstrates consistency
with the OptiTrack data and successful camera pose
estimation, but the result from BARF (left) provides
inaccurate camera poses.

ARKit BARF Ours
Translation Error

(a) BARF (b) Ours

Fig. 6. Visual comparison of optimized camera poses and
ARKit poses in the Piano scene. Since we cannot ob-
tain ground truth from general indoor data, we calcu-
late the error from the estimated poses using motion
priors from ARKit as GT. Our method (right) agrees
with ARKit poses, while BARF cannot successfully
estimate poses.
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Fig. 7. Quantitative results for PSNR in the Lounge
scenes. The proposed method makes convergence
of nonlinear optimization (MLP and camera poses)
faster than BARF .

age rendering quality and report the average rotation and
translation error of the estimated poses. Since true cam-
era poses are not accessible in general indoor scenes ex-
cept OptiTrack environments, we evaluate the accuracy
by calculating the difference between optimized poses
and poses acquired through ARKit.

We visualize the result in Fig. 4 and report quantita-
tive results in Table 2. Our method produces stable mo-
tion estimates similar to ground truth poses and achieves
high-fidelity view synthesis, and is superior on all met-
rics by comparing BARF and NeRF−− initialized with
the identity matrix (Table 2).

Fig. 5 and Table 1 show that the camera poses re-
covered from the proposed method are consistent with
ground truth acquired from OptiTrack, demonstrating the
localization ability initialized with ARKit proposed by
our method.

Our approach also demonstrates high fidelity view ren-
dering and depth map results (Fig. 4). We can recover 3D
scene representations more robustly and accurately than
BARF and NERF−−; however, BARF converges to the
wrong camera poses when the movement increases and
shows poor results in the learned scene (Fig. 6). This em-
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phasizes the importance of using a good motion priors for
BARF as initial values.

Figure. 7 shows that our method accelerates the origin
BARF for the Lounge data. The proposed method for
the same PSNR value reaches 60K, whereas the original
BARF reaches 200K.

5. CONCLUSION

We integrate motion priors from ARKit, the VIO al-
gorithm, in the BARF for stable and fast optimization.
We avoid local minima in the nonlinear optimization pro-
cess using a good initial guess and hence can effectively
optimize scene representations, and 6-Dof camera poses.
Our experiments with motion priors demonstrate over-
whelming performance by overcoming the limitations of
slow optimization and rendering of BARF and inconsis-
tent rendering results on real-world data. Using a proper
priors motion as the initial value results in higher accu-
racy and more stable motion estimates. Thorough analy-
ses of results for our methods support the effectiveness of
using the motion priors knowledge. We hope to inspire
future work in pose estimation and scene reconstruction
of the neural radiance field, especially in how much the
initial guess influences the optimization process accord-
ing to the neural radiance field model.

REFERENCES

[1] Z. Chen and H. Zhang, “Learning implicit fields
for generative shape modeling,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019, pp. 5939–5948.

[2] M. Michalkiewicz, J. K. Pontes, D. Jack, M. Bak-
tashmotlagh, and A. Eriksson, “Implicit surface rep-
resentations as layers in neural networks,” in Pro-
ceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2019, pp. 4743–4752.

[3] J. J. Park, P. Florence, J. Straub, R. Newcombe,
and S. Lovegrove, “Deepsdf: Learning continu-
ous signed distance functions for shape representa-
tion,” in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2019,
pp. 165–174.

[4] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Bar-
ron, R. Ramamoorthi, and R. Ng, “Nerf: Represent-
ing scenes as neural radiance fields for view syn-
thesis,” in European conference on computer vision.
Springer, 2020, pp. 405–421.

[5] J. L. Schonberger and J.-M. Frahm, “Structure-
from-motion revisited,” in Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, 2016, pp. 4104–4113.

[6] C.-H. Lin, W.-C. Ma, A. Torralba, and S. Lucey,
“Barf: Bundle-adjusting neural radiance fields,” in
Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021, pp. 5741–5751.

[7] Z. Wang, S. Wu, W. Xie, M. Chen, and V. A.

Prisacariu, “Nerf–: Neural radiance fields with-
out known camera parameters,” arXiv preprint
arXiv:2102.07064, 2021.

[8] “Apple ARKit,” https://developer.apple.com/
documentation/arkit/.

[9] M. Tancik, V. Casser, X. Yan, S. Pradhan,
B. Mildenhall, P. P. Srinivasan, J. T. Barron,
and H. Kretzschmar, “Block-nerf: Scalable large
scene neural view synthesis,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 8248–8258.

[10] M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. Saj-
jadi, A. Geiger, and N. Radwan, “Regnerf: Regular-
izing neural radiance fields for view synthesis from
sparse inputs,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, 2022, pp. 5480–5490.

[11] E. Sucar, S. Liu, J. Ortiz, and A. J. Davison, “imap:
Implicit mapping and positioning in real-time,” in
Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021, pp. 6229–6238.

[12] L. Yen-Chen, P. Florence, J. T. Barron, A. Ro-
driguez, P. Isola, and T.-Y. Lin, “inerf: Inverting
neural radiance fields for pose estimation,” in 2021
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2021, pp.
1323–1330.

[13] Y. Jeong, S. Ahn, C. Choy, A. Anandkumar,
M. Cho, and J. Park, “Self-calibrating neural radi-
ance fields,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2021, pp.
5846–5854.

[14] Q. Meng, A. Chen, H. Luo, M. Wu, H. Su, L. Xu,
X. He, and J. Yu, “Gnerf: Gan-based neural radi-
ance field without posed camera,” in Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision, 2021, pp. 6351–6361.

[15] “An Empirical Evaluation of Four Off-the-Shelf
Proprietary Visual-Inertial Odometry Systems,”
https://arxiv.org/abs/2207.06780/.

[16] “ios logger,” https://github.com/hyunJIN7/
ios logger/.

[17] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert,
“Initialization techniques for 3d slam: a survey on
rotation estimation and its use in pose graph opti-
mization,” in 2015 IEEE international conference
on robotics and automation (ICRA). IEEE, 2015,
pp. 4597–4604.

[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Si-
moncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE transactions
on image processing, vol. 13, no. 4, pp. 600–612,
2004.

[19] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and
O. Wang, “The unreasonable effectiveness of deep
features as a perceptual metric,” in Proceedings of
the IEEE conference on computer vision and pat-
tern recognition, 2018, pp. 586–595.

1136




