ICCAS 2022 Poster

Parsing Indoor Manhattan Scenes Using Four-Point LiDAR on a Micro UAV

Eunju Jeong, Suyoung Kang, Daekyeong Lee, and Pyojin Kim Department of Mechanical Systems Engineering, Sookmyung Women's University

Motivation

Various advantages of using micro **UAVs** for indoor mapping and SLAM Using structural regularities

(a) Square room

2D laser scanner and RGB-D camera are **not available** for micro UAVs because of the **small payloads**

in the Manhattan World, the proposed method with a lightweight and inexpensive four-point LiDAR demonstrates comparable performance to an expensive 3D LiDAR

Pipeline of the proposed method

Evaluation

Evaluation on various Manhattan world indoor environments from room scale to building scale

 \checkmark The quantitative evaluation of the proposed method

	Length Error (m)	Flight Time of Crazyflie
Square room	0.232	46 sec
L-shaped corridor	0.17	1 min 46 sec
Straight corridor	0.744	1 min 30 sec
Lounge 1	0.587	1 min 18 sec
Lounge 2	0.551	2 min 14 sec