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Fig. 1. This paper proposes a novel motion estimation algorithm, dubbed WiFi Structure-from-Motion. The approach takes WiFi and IMU sensor data
from a smartphone during normal day-to-day activities, estimates raw trajectories by inertial navigation, and reconstructs the final trajectories and a radio
fingerprint map for indoor positioning. At the right, we manually overlay the reconstruction with an aerial view of the environment (Google Maps).

Abstract— This paper proposes a novel motion estimation
algorithm using WiFi networks and IMU sensor data in
large uncontrolled environments, dubbed “WiFi Structure-
from-Motion” (WiFi SfM). Given smartphone sensor data
through day-to-day activities from a single user over a month,
our WiFi SfM algorithm estimates smartphone motion tra-
jectories and the structure of the environment represented
as a WiFi radio map. The approach 1) establishes frame-
to-frame correspondences based on WiFi fingerprints while
exploiting our repetitive behavior patterns; 2) aligns trajectories
via bundle adjustment; and 3) trains a self-supervised neural
network to extract further motion constraints. We have col-
lected 235 hours of smartphone data, spanning 38 days of daily
activities in a university campus. Our experiments demonstrate
the effectiveness of our approach over the competing methods
with qualitative evaluations of the estimated motions and
quantitative evaluations of indoor localization accuracy based
on the reconstructed WiFi radio map. The WiFi SfM technology
will potentially allow digital mapping companies to build better
radio maps automatically by asking users to share WiFi/IMU
sensor data in their daily activities.

I. INTRODUCTION

The Internet-of-Things (IoT) devices like smartphones are
ubiquitous in everyday life, providing opportunities to track
motions and localize the position of an individual from low-
energy anytime anywhere sensors. With the wide coverage
of wireless networks in human-centric environments, WiFi
becomes a reliable cue for localization thanks to its low
energy cost and flexibility of working anytime anywhere.
Effective positioning systems benefit numerous location-
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aware applications spanning indoor GPS, augmented reality,
robotics, and contact-tracing.

However, indoor positioning systems typically require la-
borious site-surveys. Early methods construct the database of
the geo-coordinates of WiFi access points (AP), while using
trilateration for positioning [1], [2]. Recent attempts bypass
site surveying under the framework of WiFi SLAM, whereas
creating high-quality radio maps typically requires a single
continuous data acquisition and is limited to small/medium-
scale environments [3], [4]. Crowdsourcing [5], [6] has been
an efficient solution for large-scale scenes but still imposes
challenges to the data acquisition process (e.g., all users have
to start from the same position and the smartphone is always
held in front of users [7]).

This paper takes WiFi positioning systems to the next
level, turning WiFi/IMU sensor data from normal day-to-day
activities into a WiFi radio map. Our goal is to estimate a
radio fingerprint map, namely geo-coordinates and received
signal strength indicators (RSSI) from unstructured and dis-
tributed motion recordings of a single user. The constructed
WiFi maps will enable the positioning of other users.

Concretely, our system (1) uses an inertial navigation algo-
rithm (RoNIN [8]) to estimate the relative motion trajectory
from IMU recordings for each day, (2) establishes trajectory
correspondences using WiFi RSSIs as features, (3) performs
bundle adjustment (BA) to correct each trajectory and aligns
all trajectories into the same coordinate system, and (4) trains
a self-supervised neural network to further extract motion
constraints for BA. We have developed an Android app to
collect WiFi and IMU measurements of a single individual
all-day in a university campus for 38 days, spanning 235
hours and 45 kilometers. The quantitative and qualitative
evaluations on the WiFi-based localization task show that
our method is able to produce 43% more accurate than the
state-of-the-art system [7].
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Note that our system does not use any external geo-
localization information such as satellite GPS or commercial
localization APIs (e.g., Google Fused Location Provider [9]).
Rather, this work is to build a radio map to enable such geo-
localization techniques, crucial in the emerging markets.

II. RELATED WORK

A. Structure from motion

Visual SLAM [10] has flourished in the past decade with
the emergence of real-time products such as Google Project
Tango and Apple ARKit. These systems require continuous
video capturing by constantly holding a smartphone. Visual
SfM is a relevant technique and works for unstructured
image collections [11]. For example, the state-of-the-art
method is capable of recovering an entire 3D city (e.g.,
Rome) from millions of unstructured images parsed from
Internet, thanks to the advances in image matching and 3D
reconstruction [12]. This paper extends such success to WiFi
SfM, using mobile WiFi and IMU sensors that are energy-
efficient and work anywhere anytime as opposed to a camera.

B. Localization

Satellite GPS has been successful for outdoor localization
but does not work in indoor environments. Researchers
have explored alternative cues such as vision, LiDAR, com-
pass, WiFi, and Bluetooth [13]. Geo-localization is typically
achieved by matching a query signal against a database
of geo-localized signals. Google Fused Location provider
(FLP) is a widely-used commercial API utilizing multi-
modal sensor data [9].

With the rapid growth of wireless networks in the early
21st century, WiFi positioning systems become the most
prominent methods given the superiority of reliability, ubiq-
uity, and flexibility, which can be categorized into two major
groups: signal-strength-based and fingerprinting-based.

Signal-strength-based methods assume that pairs of a
MAC address and a geo-coordinate are available for WiFi
access points [14], typically constructed by dedicated site
surveys. Localization is performed by trilateration [1], [2],
which, unfortunately, is not robust because of the multipath
fading issue.

Fingerprinting-based systems reply on a radio fingerprint
map, which maps a RSSI vector into a geo-coordinate. The
map can be constructed by an on-site survey or techniques
such as visual odometry and WiFi SLAM [3], [4], [15]. For
localization, analytic RSSI-to-distance models (e.g., Gaus-
sian process [3], [15]) or fingerprint-based location lookups
[16], [17] are employed. WiFi SLAM requires a single
continuous data sequence, whereas our WiFi SfM enables
radio map creation from distributed and unstructured motion
data.

C. Mobile crowdsensing

Crowdsensing via ubiquitous smartphones with rich built-
in sensors creates a new powerful paradigm for large-scale
distributed data collection for various sensing tasks, includ-
ing navigation [8], [18], indoor localization [6], [19], and

floorplan reconstruction [20], [21]. In fact, crowdsencing has
been introduced to help the construction of AP database [22]
or radio fingerprint map in larger environments [7], [23],
[24]. However, to the best of our knowledge, no work has
been tested with real data in the wild [7], [23], [24]. For
example, a phone was carried by a hand, in a pocket, or in
a bag, but ten users were simply asked to randomly walk
inside one floor for an hour [24]. All our data come from a
smartphone under standard daily activities, where one may
read/write emails, browse websites, order foods, or simply
carry in a pocket, which span more than 6 hours per day on
the average over 38 days inside an entire university campus.

III. PROBLEM DEFINITION AND DATASET

A. WiFi Structure-from-Motion

WiFi SfM is the task of taking WiFi and IMU sensor
measurements over multiple trajectories, potentially across
different dates by different users, then reconstructing their
motions as well as a WiFi radio map in a single coordinate
frame. This paper focuses on sensor data in the wild by
a single individual, acquired through daily activities. Note
that the task does not take any external geo-localization
information such as satelite GPS, but rather reconstructs a
radio map to enable such geo-localization services.

B. Dataset

We developed an Android app to record IMU and WiFi
sensor data, which is adopted from [25] and collects ac-
celerations (200Hz), angular velocities (200Hz), and device
orientations (100Hz). The WiFi receiver records RSSIs and
the MAC addresses at 1Hz.

We installed the data capture app to an android smartphone
(i.e., Samsung Galaxy S9) of a single individual, where the
individual turns on the app upon arriving the Simon Fraser
university campus and turning off the app before leaving. The
smartphone is handled by the individual naturally as a part
of daily activities. Note that the data were captured before
the COVID shutdown in the middle of a busy semester. The
dataset spans 38 days with the average duration of 6.2 hours
and the average travel distance of 1.2 kilometers per day,
covering approximately 550m×580m space.

IV. ALGORITHM

Our WiFi SfM algorithm draws an inspiration from vi-
sual SfM with similar system components as depicted in
Figure 2. Our algorithm is also similar in spirit to WiFi
SLAM, which 1) estimates a relative motion per trajectory
based on pedestrian dead reckoning (PDR); 2) finds frame-
to-frame correspondences based on the RSSI similarities;
and 3) bundle-adjusts (BA) the trajectories based on the
correspondence constraints [3], [4], [7].

There are two key distinctions in our approach. First,
we exploit repetitive behavior patterns to obtain motion
constraints. For example, we walk the same routes to the
same office and use the same restroom everyday. Second, if
the estimated motions were correct, a standard RSSI-based
positioning should be accurate. We train a neural network
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Fig. 2. System overview. Our approach turns IMU sensor data into relative motion trajectories by RoNIN [8]. We then use intra-trajectory correspondences
for correcting drifting errors in each single trajectory, and use inter-trajectory correspondences and clustered stationary frames (i.e., stationary landmarks)
to align trajectories into the same coordinate. The iterative refinement produces the final trajectories.

to perform RSSI-based positioning with self-supervision,
then derive new constrains enforcing that the reconstructed
motions are consistent with the RSSI-based positioning.

Concretely, given a sequence of IMU sensor data for each
day, we first use a state-of-the-art neural inertial navigation
algorithm RoNIN [8] to estimate a relative motion trajectory.
Second, we establish correspondences based on WiFi signals
for stationary (i.e., no motions) and non-stationary frames
(Section IV-A). Given the correspondences, we perform
intra- and inter-trajectory bundle adjustment (Sections IV-
B and IV-C). Finally, an iterative refinement is performed by
enforcing the consistency between the motion estimations
and the RSSI-based positioning (Section IV-D). Below we
present the details of each component.

A. WiFi-based correspondence matching

1) Stationary frames: Humans do not keep moving 24
hours a day, and tend to stay at certain landmarks, which
could be a desk, a meeting room, or a favorite cafe. We
detect stationary frames (i.e., no motion) whose magnitudes
of the angular velocity vectors from the Android API are
below 0.1. This process turns a trajectory into intervals of
stationary frames and non-stationary frames. We treat non-
stationary intervals less than 3 minutes as stationary to filter
out noise, then group/match stationary intervals across all the
trajectories by mean-shift clustering (scikit-learn implemen-
tation), while treating the average RSSI vector within each
interval as the feature.

This process matches stationary intervals as a landmark,
which will be used as frame-to-frame correspondences. Since
the stationary frames account for 87% of the data, we drop
them and concatenate the remaining frames to shorten each
trajectory for the subsequent pose estimation.

2) Non-stationary frames: Following a popular approach,
we use the cosine similarity metric between WiFi RSSI vec-
tors to establish frame-to-frame correspondences [7], [26].
Given a trajectory, for each frame, we find the other frame
with the most similar RSSI vector that is more than F/10
frames away, where F is the total number of frames in the
trajectory (i.e., intra-trajectory correspondence). Similarly,
given a pair of trajectories, for each frame, we find the
other frame in the other trajectory with the most similar
RSSI vector (i.e., inter-trajectory correspondence). Unreli-
able correspondences are eliminated by the forward and
backward consistency check, popular in the computer vision
literature [27]: In order for frame f and g to be a match, f
must be the closest to g, and vice versa.

B. Intra-trajectory bundle adjustment

Intra-trajectory correspondences enable non-linear least
squares optimization to refine the shape of each trajectory,
mitigating the rotational accumulation errors caused by gyro-
scope bias [8], [28], [29]. Specifically, RoNIN estimates the
relative motion represented as a pair of velocity magnitude
vi

f and heading direction angle θ i
f at frame f for the ith

trajectory. We solve for the angle correction ∆θ i
f :

min
{∆θ i

f |1≤ f≤F}
∑

( f ,t)∈Φi

ρ
(
‖xi

f −xi
t‖2)+ F−1

∑
f=2

ρ
(
(∆θ

i
f −∆θ

i
f−1)

2)
xi

f denotes the 2D position at frame f and is computed as
xi

f = xi
0 + ∑

f
t=1 vi

t [cos(θ i
t + ∆θ i

t ),sin(θ i
t + ∆θ i

t )]
>. xi

0 is the
starting position and set to [0,0]> in RoNIN. Φi denotes
the intra-trajectory correspondences for trajectory i. 1 The

1We use non-stationary correspondences while excluding stationary cor-
respondences here for simplicity, which did not change results.

2159



first term ensures the spatial consistency between matched
frames. The second term enforces the smoothness of angle
displacements at adjacent frames. ρ is the Cauchy loss
function, which is robust and there are no scalar weights
for the two terms.

After optimization, we filter out unreliable trajectories
whose spatial consistency error is above 8.0 or number of
frame correspondences is below 13. In our experiments, 15
out of 38 trajectories are removed by this process.

C. Inter-trajectory bundle adjustment

Inter-trajectory correspondences enable non-linear least
squares optimization to align all the trajectories into the
same coordinate system by solving for the angle corrections
and the starting points simultaneously. Compared to the
bundle adjustment in IV-B, here the formulation has three
terms: 1) The spatial consistency term in the same form,
including both intra- and inter- trajectory correspondences;
2) Exactly the same smoothness term; and 3) The stationary
consistency term ∑C∈Ω ∑( f ,i)∈C ρ

(
‖xi

f − x̄C‖2
)

, enforcing
that the stationary frames in the same cluster are close. Ω

is the set of clusters and x̄C denotes the average location of
cluster C. Again, we use the robust Cauchy loss and there
are no scalar weights for the three terms.

D. Iterative refinement

The last step enforces the consistency between the re-
constructed motions and the RSSI-based positioning results.
Given a reference frame, we find top-10 closest frames based
on the position distances, then use a weighted average of
the positions of the neighbors to predict the location of
the reference frame. If reconstructed motions were accurate,
the prediction should be consistent with the location of the
reference frame.

Concretely, the process iterates two steps: 1) Training a
neural network, predicting the weights of the neighbors;
and 2) Using the network to predict the locations and
running the final bundle-adjustment to refine the motions
while minimizing the inconsistencies between the predictions
and the current motion reconstructions.
Weight network: We use a four layer multi-layer-perceptron
(MLP) to predict the weights of the 10 neighbors with
respect to a reference. A RSSI vector is represented as an N-
dimensional vector, where N is the number of access points
in a scene (N = 535 in our case). The input to the MLP is
a 10×2N tensor, where each row is a concatenation of the
RSSI vectors from a neighbor and the reference. Note that
the reference vector is repeated across rows. The output is
a 10-dimensional weight vector for the 10 neighbors. The
two hidden layers has 2048 and 1024 nodes, respectively.
All layers are followed by a ReLU function, except the
output layer that is followed by a softmax function. The
loss measures the consistency between the prediction and the
location: ‖xi

f − x̂i
f ‖2, where x̂i

f = ∑
10
s=1 wsxs is the weighted

average of xi
f . The PyTorch library is employed for neural

network training with an Adam optimizer. The learning rate
is 0.0001 and the batch size is 16.

TABLE I
QUANTITATIVE COMPARISONS AGAINST TWO STATE-OF-THE-ART

METHODS AND ONE VARIANT. COLUMN “WIFI ONLY?” INDICATES IF A

METHOD USES WIFI DATA ONLY FOR LOCALIZATION. THE LAST TWO

COLUMNS SHOW THE LOCALIZATION ERRORS (MEAN AND MEDIAN) IN

METERS. THE COLORS CYAN AND ORANGE REPRESENT THE BEST AND

THE SECOND BEST.

Method WiFi only? Mean Median
C-SLAM-RF [7] X 21.0 15.1
FLP [9] 8.8 7.2
Ours w/o refine X 18.3 13.0
Ours X 11.9 8.7

Final bundle adjustment: The same bundle adjustment
process refines the angle displacement ∆θ f and the starting
point x0 for each trajectory, subject to the same smoothness
term and the above loss function:

min
x0,{∆θ f |1≤ f≤F}

F−1

∑
f=1

ρ
(
‖x f − x̂ f ‖2)+ F−1

∑
f=2

ρ
(
(∆θ f −∆θ f−1)

2)
We repeat the iteration 20 times to produce the final result.

V. EXPERIMENTAL RESULTS

We have implemented our approach in C++ and Python.
For inertial navigation, the RoNIN ResNet model from the
official website is used [8]. The Ceres library is used for the
bundle adjustment steps [30]. The algorithm takes about 10
hours in total on a workstation with an Intel Core i7-7740X
CPU and an NVIDIA GTX 1080Ti GPU with 11GB RAM.

A. Experimental setup

Test dataset: We use a Google Tango phone (Asus Zenfone
AR) to collect data in the areas covered by our estimated
radio map. We recorded WiFi RSSIs (1Hz), Google FLP re-
sults [9] (1Hz), and 6 DoF poses from visual SLAM (200Hz),
which is used as ground-truth. Sensor measurements are
asynchronous, and we use nearest neighbor interpolation
to compute sensor measurements at arbitrary time-stamps.
The test set consists of 22 raw trajectories, with an average
duration of 2.7 minutes, which are all acquired independently
from our dataset in Section III.

Evaluation metric: An ideal evaluation metric would be
the accuracy of WiFi localization results based on a recon-
structed radio map. However, our radio map is reconstructed
up to a rigid transformation, which cannot be compared
with the ground-truth. Instead of manually aligning our
reconstruction to the map for ground-truth evaluation, we
perform the following automatic process for the quantitative
evaluation. Concretely, given a test sequence, we 1) use the
nearest neighbor search with the radio map to localize each
of the RSSI vectors, 2) align the results with the Tango
trajectory by iterative closest point (ICP), and 3) calculate
the average Euclidean distance between the corresponding
locations.
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Tango query C-SLAM-RF FLP OursOurs w/o refine

Fig. 3. Qualitative evaluations. The left column shows the four query sequences from a Tango device in green. The gray dots show all the query sequences.
In the right four columns, gray dots show the reconstructed trajectories by C-SLAM-RF [7], FLP [9], and our system without or with the refinement step.
Note that FLP shows the coordinates by the Google FLP API. In the top row, blue dots show the localization results, where RSSI-based nearest neighbor
is used for C-SLAM-RF and our methods, while the result of Google API is simply shown for FLP. In the bottom row, green is again the query sequence
from Tango, while blue shows the localization results that are aligned with the query via ICP. The red oval highlights large motion errors by C-SLAM-RF.
The cyan oval highlights an area with large errors by our method, which is less frequently visited and lack enough constraints.
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Fig. 4. Effectiveness of intra-trajectory bundle adjustment (Section IV-B). The top row shows the raw motion trajectories (green) by RoNIN [8], where
the dashed lines show the intra-trajectory correspondences. The bottom row shows the drift-free trajectories (blue) after the correction.

B. Competing methods

We compare against two competing methods and one
variant of our system.
• C-SLAM-RF [7] is a state-of-the-art WiFi SLAM sys-
tem using WiFi-based loop closing. No implementation is
available and we reproduced the system with two minor
modifications: (1) Inertial navigation trajectories after the
intra-trajectory bundle adjustment including the filtering (IV-
B) are used as input, whereas the original version uses clean
input trajectories without accumulation errors; (2) For fair
comparison, the same Ceres is used as the optimizer.
• Fused Location Provider (FLP) [9] is a commercial geo-
localization service by Google. We call the FLP API at 1Hz
while collecting the test data.
• Ours w/o refine is a variant of our approach without the
iterative refinement step.

C. Quantitative evaluation

Table I shows the main quantitative evaluations. C-SLAM-
RF is the state-of-the-art system but has the largest localiza-
tion errors (inferior to ours by 9.1 meters). In their exper-
iments, all the trajectories started from the same location
and the phone was always hand-held. Furthermore, we did
not observe severe drifting errors in their data, possibly
because the sensors were calibrated carefully before every
data acquisition. Our experiments run on real data in the
wild all day every day through normal day-to-day activities,
posing real challenges. FLP achieved the best performance,
which is understandable as FLP is a multi-modal system uti-
lizing GPS, WiFi, IMU, and potentially rich digital mapping
information (e.g., a WiFi access point named Starbucks must
be at the Starbucks store) with offline manual data cleaning.
Our system is fully automatic and takes only a single RSSI
vector for the localization task. Nonetheless, our approach
achieves comparable errors (differs by 3.1 and 1.5 meters
for mean and median) with a much simpler framework.

Our WiFi SfM system consists of three major steps:
correspondence matching, bundle adjustment, and iterative
refinement. While first two are inspired by visual SfM,
iterative refinement is a new idea. To demonstrate the ef-
fectiveness of the refinement, we conduct an ablation study
by evaluating our system without the refinement step. The

last two rows in Table I show that the iterative refinement
reduces the mean error by 6.4 meters (35%) and median error
by 4.3 meters (33%), validating our contribution.

D. Qualitative evaluation

Figure 3 compares the reconstructed motion trajectories
and the localization results. C-SLAM-RF suffers from er-
roneous alignment everywhere as highlighted by the red
oval. The localization accuracy also degrades, as seen in the
fluctuating blue curves in the second column. Our approach
(the last column) significantly outperforms C-SLAM-RF and
obtains smooth localization results, which align well with the
Tango trajectory. Visually, FLP and our method are compa-
rable, which is supported by the quantitative evaluations in
Table I. The last two columns clearly show the effectiveness
of our iterative refinement.

Figure 4 shows the reconstructed motions before and after
the intra-trajectory bundle adjustment. In each of the six
trajectories, the first and the last frames must be at the
same location. However, severe rotational drifts are present,
as is typical in inertial navigation with real data, which
are all successfully corrected by the intra-trajectory bundle
adjustment.

VI. CONCLUSION

This paper proposes a novel WiFi Structure from Motion
system that reconstructs a radio map for an unknown envi-
ronment by aligning unstructured motion trajectories across
multiple days from a single user. Following the successful
visual SfM pipeline, our method finds intra- and inter-
trajectory correspondences using WiFi RSSIs and recon-
structs motion trajectories by bundle adjustment. A novel
iterative refinement scheme is also proposed for accuracy
boost. Quantitative and qualitative evaluations demonstrate
the effectiveness of our approach over the competing meth-
ods. WiFi SfM could allow us to construct the radio map for
every single building in the world by mobile crowdsensing.
Our future work includes more experimental validations with
more data as well as true multi-user crowdsensing towards
city-scale WiFi SfM, both of which are becoming possible
as the pandemic is coming to an end.
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