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Abstract—We propose a new linear RGB-D simultaneous localization and mapping (SLAM) formulation by utilizing planar features of
the structured environments. The key idea is to understand a given structured scene and exploit its structural regularities such as the
Manhattan world. This understanding allows us to decouple the camera rotation by tracking structural regularities, which makes SLAM
problems free from being highly nonlinear. Additionally, it provides a simple yet effective cue for representing planar features, which
leads to a linear SLAM formulation. Given an accurate camera rotation, we jointly estimate the camera translation and planar
landmarks in the global planar map using a linear Kalman filter. Our linear SLAM method, called L-SLAM, can understand not only the
Manhattan world but the more general scenario of the Atlanta world, which consists of a vertical direction and a set of horizontal
directions orthogonal to the vertical direction. To this end, we introduce a novel tracking-by-detection scheme that infers the underlying
scene structure by Atlanta representation. With efficient Atlanta representation, we formulate a unified linear SLAM framework for
structured environments. We evaluate L-SLAM on a synthetic dataset and RGB-D benchmarks, demonstrating comparable
performance to other state-of-the-art SLAM methods without using expensive nonlinear optimization. We assess the accuracy of
L-SLAM on a practical application of augmented reality.

Index Terms—Linear SLAM, Manhattan World, Atlanta World, RGB-D Image, Bayesian Filtering, Scene Understanding.
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1 INTRODUCTION

V ISUAL simultaneous localization and mapping (visual
SLAM) is the problem of estimating the six degrees

of freedom (DoF) rotational and translational camera mo-
tion while simultaneously building a map of a surround-
ing unknown environment from a sequence of images.
Visual SLAM methods have been widely studied within
the robotics and computer vision communities for several
decades [1]. They are the fundamental building blocks for
various computer vision applications such as autonomous
robots and virtual and augmented reality (VR/AR) [2]–[4].

Typical visual SLAM approaches, such as DVO-
SLAM [5] and ORB-SLAM2 [6], have shown promising
results in general environments with rich texture. They
usually rely on low-level features such as point features in
the vicinity of the texture. Thus, they fare poorly in texture-
less or feature-less scenes, which are commonly encountered
in indoor environments with large planar structures. To
alleviate this limitation, recent SLAM methods [7]–[9] utilize
additional high-level geometric primitives such as planar
features of structured indoor environments.

Most indoor environments not only consist of planar
structures but also exhibit formal and regular forms. For in-
stance, from the indoor structure of the building (e.g., room
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Fig. 1. Linear SLAM on the ICL-NUIM dataset [10]. The proposed L-
SLAM generates a consistent global planar map using a linear Kalman
filter framework instead of an expensive pose graph optimization. Left
top: The tracked planar features following the Manhattan structure are
overlaid on top of the RGB images. Left bottom: AR application results
in the red circles with the international space station and Elk’s head 3D
models. Right : Global planar map and non-planar regions are rendered
by back-projecting the RGB-D images from the estimated camera tra-
jectory with L-SLAM. We omit the ceiling planar features for visibility.

layout) to object (e.g., furniture), they can be represented by
a set of cuboid structures of various sizes (see Fig. 1). In
computer vision, most of these structures, in the shape of
cuboid, are commonly approximated using the Manhattan
world (MW) assumption [11], which is defined by three
orthogonal directions. In addition to the MW assumption,
there exist several structural assumptions defined according
to the level of constraint, e.g., the Atlanta world (AW) as-
sumption [12] based on a semi-orthogonality, and a mixture
of Manhattan frames [13] composed of multiple Manhattan
structures. By its orthogonality and simplicity, the structural
assumptions have been exploited in various computer vi-
sion applications, such as 3D reconstruction [14], and scene
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Fig. 2. Overview of the proposed L-SLAM algorithm. We highlight key
components (boxes filled in grey) of the proposed approach for our main
contributions. Blue-dashed box indicates the components of LPVO [18].

layout inference [15, 16]. In particular, visual odometry (VO)
and SLAM approaches [17, 18] can achieve drift-free ro-
tational motion of the camera by utilizing the structural
patterns observed repeatedly and consistently, resulting in
an improved location estimation accuracy, which is our
motivation.

In this work, we propose a novel linear RGB-D SLAM
approach, referred to as L-SLAM1, which efficiently utilizes
dominant directions of a given structured indoor scene –
structural regularities. Based on the understanding of the
underlying structural regularities (i.e., dominant directions),
we jointly estimate camera position and planar landmarks
in the global planar map within a linear Bayesian filter, as
shown in Figs. 1 and 2. Concretely, we first recognize and
track the dominant directions of the structured scene – dom-
inant directions satisfying the Manhattan or Atlanta worlds.
It allows us to decompose the rotational motion, which is the
main source of nonlinearity in SLAM formulation. Given the
absolute camera rotation, L-SLAM identifies the horizontal
and vertical planes supporting the structured environments
and measures the distance to these planes from the current
camera pose. With the distance measurements, we simul-
taneously update the 3-DoF camera translation and the 1-
D distance of the associated planar landmarks in the map
within a linear Kalman filter (KF) framework. The following
is a summary of our main contributions:

• We propose the first linear and unified RGB-D SLAM
approach for two different structural regularities – the
Manhattan and Atlanta worlds.

• We introduce a novel tracking-by-detection scheme that
estimates the underlying unknown structural regulari-
ties (i.e., Atlanta structure) of a scene, which allows us
to calculate the camera rotation robustly.

• By exploiting efficient parametrization for the structural
regularities, we compactly represent an observed plane
as the association to the supporting direction and 1-D
distance (i.e., planar landmark), enabling us to formu-
late the measurement model as a linear model.

• Our method has been validated through extensive ex-
periments on both synthetic and real-world RGB-D
benchmark datasets. In addition, we show the appli-
cability of L-SLAM to augmented reality (AR).

1. In general, we call the proposed linear SLAM as L-SLAM, and
according to the structured patterns employed, we will denote L-SLAM
for the Manhattan world (MW) as LMW-SLAM, and L-SLAM for the
Atlanta world (AW) as LAW-SLAM throughout in this paper.

This paper presents a unified linear SLAM approach to
our previous conference works [4, 19], utilizing two differ-
ent structural assumptions – the Manhattan and Atlanta
world assumptions, respectively. Specifically, we describe
and analyze the two different structured assumptions – their
definition and representation (parametrization). Based on
this fact, we seamlessly integrate two SLAM approaches into
a unified method and show its effectiveness through quali-
tative and quantitative evaluations and AR applications.

2 RELATED WORK

Visual SLAM methods have been actively studied within the
robotics and computer vision communities for the past two
decades owing to its importance in various applications,
from autonomous UAV to AR. From the vast literature on
the visual SLAM, we provide a brief overview of state-of-
the-art typical approaches and some SLAM methods utiliz-
ing planar structures.

Many successful SLAM algorithms have been devel-
oped using either point features (i.e., indirect approach) or
high gradient pixels (i.e., direct method). Representatives
of these are direct LSD-SLAM [20], DSO [21], and feature-
based ORB-SLAM2 [6]; however, their performance can be
severely degraded in challenging low-texture environments.

Some works in the early years of SLAM research ex-
ploited planes as additional feature within an extended
Kalman filter (EKF)-based SLAM approaches [22]. In [23,
24], tracked points lying on the same plane were refor-
mulated as planar features to reduce the state size in
EKF-SLAM. Servant et al. [25] included planar features in
the EKF state vector with a priori structural information.
Martı́nez-Carranza and Calway [26] proposed a unified
parametrization for both points and planes within an EKF-
based monocular SLAM. Weingarten and Siegwar [27] used
planar features extracted from 2D laser scanner in an EKF-
based SLAM. However, these EKF-SLAM methods utilizing
planar features have some problems. They cannot avoid lo-
cal linearization error [28] because the combined estimation
of camera rotation and translation results in non-linearity of
the measurement model. In addition, because both distance
and orientation are used to represent the planar features,
the size of the state vector and covariance matrix (compu-
tational complexity) grows rapidly over time, which limits
applications to a room-scale environment.

Several recent planar SLAM studies have applied graph-
based SLAM [29]–[31], which is a nonlinear and non-convex
optimization problem [17]. To avoid singularities in pose
graph optimization, Kaess [32] presented a minimal plane
representation of infinite planes. Ma et al. [33] tracked
keyframe camera pose and global plane model by perform-
ing direct image alignment and global graph optimization.
Yang et al. [7] performed graph-based SLAM with the
plane measurements coming from scene layout understand-
ing using convolutional neural networks (CNN). In [9], a
keyframe-based factor graph optimization was performed
to achieve real-time operation on a CPU only. Although
these approaches demonstrate superior estimation results
in structured environments, they require expensive and
difficult pose graph optimization since they estimate the
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camera translation and rotation together, which is a main
source of nonlinearity in SLAM formulation [17].

In general, planar features in man-made environments
have structural forms whose properties can be utilized as a
priori information or structural regularities in SLAM and
navigation processes [34]–[36]. Struab et al. [37] utilized
the Manhattan structure to estimate rotation robust against
angular drift. Kim et al. [18, 38] tracked the Manhattan frame
of a given scene to estimate drift-free rotational motion,
which enables the de-coupling of translational motion. Le
and Košecka [8] proposed a planar RGB-D SLAM method
that estimates the camera rotation by identifying local Man-
hattan frames between subsequent frames and then infers
2-DoF camera translation in a graph SLAM framework.
Recently, Li et al. [35] leveraged the structural regularity of
the Atlanta world for a monocular SLAM approach. Zou et
al. [36] proposed a visual-inertial odometry that utilizes
Atlanta structure by using line features with prior orien-
tation. Although a few studies have recently attempted to
utilize the structural regularities for visual navigation, there
is a lack of sufficient experiments and validation results in
various structured environments.

To the best of our knowledge, this is the first linear RGB-
D SLAM approach that fully utilizes the structural features
such as the Manhattan and Atlanta worlds without any
prior knowledge. The most relevant planar SLAM approach
to the proposed L-SLAM is [8], which first estimates the 3-
DoF camera rotation by recognizing the piece-wise planar
models, and utilizes graph SLAM optimization to recover
the 2-DoF camera translation. However, in contrast to the
proposed L-SLAM which, estimates full 6-DoF camera mo-
tion, there is an assumption that the translational motion of
the camera is always planar.

3 PROBLEM STATEMENT

In this section, we briefly present an overview of the pro-
posed L-SLAM (Sec. 3.1) and provide preliminary informa-
tion required for the proposed method (Sec. 3.2).

3.1 Overview
Given an RGB-D sequence as input, we propose a lin-
ear RGB-D SLAM framework for structured environments
(L-SLAM) that jointly estimates camera pose and planar
landmarks in the global planar map. Specifically, we first
recognize the unknown structural regularities (dominant
directions satisfying the Manhattan or Atlanta worlds) of a
given scene using the tracking-by-detection scheme, which
enables us to robustly estimate and decompose the ro-
tational motion (Sec. 4). Based on this structural under-
standing, we identify the horizontal and vertical planes
supporting the structural regularities and formulate a linear
SLAM framework using the distance to these planes from
the current camera pose (Sec. 5).

3.2 Preliminary
Before the technical details, we introduce structural assump-
tions and their representations (i.e., parametrizations) in
Sec. 3.2.1, which are key factors in the proposed L-SLAM.
We then give a brief description of the previous LPVO
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Fig. 3. Manhattan world vs. Atlanta world: (a) Manhattan frame
represented by a rotation matrix R = [r1, r2, r3] ∈ SO(3) and the
corresponding scene satisfying the Manhattan world. (b) Atlanta frame
modeled by a rotation matrix R and an angle set {αm}Mm=2 [42] and a
scene structure following the Atlanta world.

algorithm [18] that estimates the rotational motion and
initial translational motion under the Manhattan world in
Sec. 3.2.2. Our L-SLAM utilizes several modules in LPVO
and extend them into a linear SLAM framework for the
Atlanta world as well as the Manhattan world.

3.2.1 Structural Representation
Manhattan World (Manhattan Frame). Man-made environ-
ments such as indoor objects and buildings have structural
forms composed of orthogonal and parallel planes, which
are commonly based on the Manhattan world (MW) as-
sumption [11] in computer vision and robotics. Under the
MW assumption, three orthogonal directions are used to
describe a scene structure. These are referred to as the Man-
hattan frame (MF) or Manhattan directions and can be simply
represented by a rotation matrix R = [r1, r2, r3] ∈ SO(3),
as shown in Fig. 3(a). We denote MF as RMF.

By virtue of its simplicity, MF estimation of structured
environments is commonly utilized as an essential part in
high-level computer vision tasks such as scene understand-
ing [16, 39], and layout estimation [40, 41]. In particular,
given a scene following the Manhattan structure, tracking
MF enables the estimation of drift-free rotation in SLAM
framework and VO approach [4, 18]. However, the MW
assumption is not suitable for a wide range of man-made
structures whose horizontal directions are not orthogonal
to each other such as the non-orthogonal walls of the Pen-
tagon.
Atlanta World (Atlanta Frame). To alleviate the limited
expression of the Manhattan world, Schindler et al. [12]
proposed Atlanta world (AW), in which the horizontal
directions are orthogonal to the vertical (typically gravity)
direction; however, in contrast to the Manhattan world,
these horizontal directions do not have to be orthogonal
to each other. Thanks to these geometric characteristics, the
Atlanta structure is a minimal model for representing the
maximum range of man-made environments, permitting the
handling of a wider range of scenes.

We can represent an Atlanta structure as a set of unit
direction vectors V = {vv,vh1 ,vh2 ,· · ·,vhM

} = {vm}M+1
m=1

that consists of a vertical vector vv = v1 and a set of M
horizontal vectors vhm = vm+1, where vv ⊥ vhm (called
the AW constraint) for m ∈ {1, · · ·,M}. We refer to this
direction set V as the Atlanta frame (AF) or Atlanta directions.
To represent AF, we follow the efficient AF parametrization
proposed by Joo et al. [42, 43]. Specifically, their AF represen-
tation leverages the rotation matrix R = [r1, r2, r3] ∈ SO(3)
to represent the vertical direction and the first horizontal
direction by r1 and r2, i.e., vv = r1 and vh1 = r2,
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where vh1
acts as a reference location. Then, each additional

horizontal direction vhm
can be defined as a single angle

parameter αm by rotating vh1
by the angle αm around the

axis vv , as depicted in Fig. 3(b). Thus, we can represent an
AF V by {R, {αm}Mm=2}, which includes the AW constraint
without explicit conditions and allows for the formulation of
a linear SLAM adapted to the AW assumption (cf ., Sec. 5.2).

3.2.2 Line and Plane-based Visual Odometry
We briefly summarize the Line and Plane based Visual Odom-
etry (LPVO) [18]. LPVO has two main steps: 1) structural
regularities – limited to Manhattan – are tracked to obtain
the drift-free camera rotation with an SO(3)-manifold con-
strained mean shift algorithm, and 2) estimation of camera
translation by minimizing a de-rotated reprojection error
from tracked points.
Rotation Estimation. The core of the drift-free rotation
estimation in LPVO is to track the MF jointly from both
lines and planes by exploiting structural regularities. Lines
from RGB images and surface normal vectors from depth
images are simultaneously used to estimate the drift-free
camera orientation accurately and stably even when looking
at only one or two planes. Given the density distribution of
vanishing directions from lines and surface normals from
depth on the Gaussian sphere S2, LPVO infers the mean
of the directional vector distribution around each dominant
Manhattan direction through a mean shift algorithm with a
Gaussian kernel in the tangent plane R2 [44]. LPVO applies
the Riemann exponential map to transform the mean shift
results back to the Gaussian sphere S2 from the tangential
plane R2.

The three modes r̂1, r̂2, r̂3 (r̂i ∈ R3) found by the mean
shift algorithm are projected onto the SO(3) manifold be-
cause each Manhattan direction is independently updated.
To satisfy the MW constraints (i.e., full-orthogonality), LPVO
employs the singular value decomposition (SVD):

RMF = UV>, (1)

[U,D,V] = SVD(
[
λ1r̂1 λ2r̂2 λ3r̂3

]
),

where λi is a weighting factor of how certain the observation
of a direction is [44]. In this manner, LPVO can keep track of
the Manhattan structures in every frame, allowing the drift-
free 3-DoF rotational motion of the camera with respect to
the world coordinate of the Manhattan world.
Translation Estimation. LPVO transforms feature corre-
spondences between consecutive frames into a pure trans-
lation by making use of the drift-free rotation estimation
in the previous step. The 3-DoF translation motion, which
minimizes the residual vectors of all tracked feature points
with and without depth, can be obtained by solving the
following optimization problem:

t∗ = arg min
t

Nk∑
i=1

(ri1(t))
2

+ (ri2(t))
2

+
Nu∑
i=1

(r′i(t))
2
, (2)

where ri1(t), ri2(t) and r′i(t) are the de-rotated reprojection
error with the number of tracked features with known Nk

and unknown Nu depth information, respectively (for fur-
ther detailed derivation of Eq. (2), see [18]). LPVO can obtain
the 3-DoF translational motion of the camera by minimizing
the de-rotated reprojection error from the tracked points,

which is only a function of the translational camera mo-
tion t. We will use the estimated translational motion as an
initial translation in the proposed linear SLAM formulation.

It should be noted that LPVO estimates only camera
pose under the MW assumption. We basically utilize the
overall pipeline of LPVO and extend it into a novel linear
SLAM framework for the general structured environments
(the Atlanta structure), as shown in Fig. 2.

4 STRUCTURAL REGULARITIES UNDERSTANDING

This section describes how to recognize the unknown struc-
tural regularities of structured environments and robustly
estimate camera rotation from the structural regularities.
The MW assumption, a subset of the AW assumption,
consists of three orthogonal directions (only two horizontal
directions); that is, their orientation relation is fixed, and
only a tracking module is required once recognized like
LPVO [18]. In contrast, the AW assumption does not impose
any pre-determined number of horizontal directions nor
any prior in their relative orientations. Thus, estimating
the Atlanta structure of a scene itself is a challenging and
non-trivial task. To this end, we first introduce a tracking-
by-detection algorithm for the Atlanta structure, where the
tracking algorithm is complemented by a detection module
that identifies new or missing directions and makes the
tracking robust (Sec. 4.1). Based on the estimated Atlanta
structure by the tracking-by-detection, we then estimate
camera rotational motion (Sec. 4.2).

4.1 Tracking-by-Detection Algorithm
We propose a new tracking-by-detection framework that
estimates the underlying Atlanta structure of a scene, called
the global Atlanta frame VG (see Fig. 4). The global AF VG con-
tains all of the Atlanta directions observed and their activa-
tion label lG2.

Concretely, given the surface normals and vanishing
directions of the k-th frame, denoted as N k, we first in-
dependently track and detect the AFs. We then associate
the tracked and detected AFs into one unified AF. We
call this unified AF local Atlanta frame Vk

L describing the
Atlanta structure of the current (local) frame. The local
AF Vk

L includes its association label lkL that stores the index
of the corresponding Atlanta direction in the global AF.
Given the estimated local AF Vk

L, we update the global
AF VG and its associated activation label lG and compute
the association label lkL. The detailed procedure of the pro-
posed tracking-by-detection is formalized in Alg. 1. In the
Manhattan world, we perform the tracking module only
after initializing the Manhattan structure.

4.1.1 Atlanta Frame Tracking
We track each Atlanta direction via a mean shift algorithm
in the tangent plane with a Gaussian kernel similarly to the
density-based dominant direction tracking [44]. Given the
surface normals and vanishing directions distributed on a
unit sphere N k and an initial Atlanta direction vl

L ∈ V
k−1
L ,

2. A binary activation label is associated with each direction in the
global AF. Each label is set to 1 if its corresponding Atlanta direction in
the global AF is activated, otherwise 0.
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Fig. 4. Overview of the tracking-by-detection scheme. (a) Given a surface normal distribution N k at the k-th frame with the previous local
AF Vk−1

L (dashed arrows), we independently perform (b) mean shift-based AF tracking and (c) BnB-based AF detection. (d) We then apply the
association step; associate tracked AF Vk

T and detected AF Vk
D into the local AF Vk

L (local association), where the orange arrows indicate the
associated directions and the black arrow denotes a potential direction. In the global association, we associate the local AF Vk

L with the global
AF VG, in which the typical arrows represent activated directions and the dashed purple arrow describes the de-activated direction. (e) As output,
we obtain the updated local AF and global AF, where a new horizontal direction (cyan arrow) is born.

Algorithm 1 Tracking-by-detection for Atlanta frame

Input: Surface normal sequence N k.
Output: Local AF Vk

L with its association label lkL and global
AF VG with its activation label lG.

1: Detect AF V1
D on N 1

2: VG ← V1
D , V1

L ← V1
D . Initialize VG and V1

L
3: Initialize lG and l1L
4: cD = 1 . Initialize non-detection counter
5: for surface normal N k(k ≥ 2) do
6: Vk

T ← V
k−1
L . Initialize seed for tracking

7: Do mean shift-based AF tracking Vk
T on N k . Tracking step

8: if |Vk
T | < 2 or cD > 30 then

9: Detect AF Vk
D on N k . Detection step

10: cD = 0 . Reset non-detection counter
11: end if
12: Do local association (cf ., Alg. 2)
13: Do global association (cf ., Alg. 3)
14: Force Atlanta world constraint on Vk

L
15: cD = cD + 1 . Count accumulated non-detection frame
16: end for

we project the surface normals and vanishing directions into
the tangent plane at vl

L, and infer the mean of the directional
vector distribution around the projection of each Atlanta
direction vl

L, as depicted in Fig. 4(b). After applying a mean
shift [45], we estimate the tracked Atlanta direction vt

T

by projecting the mean estimate onto the unit sphere (for
more details, see [44]). If vt

T does not cover a given normal
distribution with a certain percentage of the total number
of normals, we discard this direction, which will be de-
activated during the association. We denote the tracked AF
as Vk

T ={vt
T }

NT
t=1, where NT is the number of tracked Atlanta

directions.

4.1.2 Robust Atlanta Frame Detection
We run an AF detection process separately from the track-
ing, as shown in Fig. 4(c). Through the detection step, we
can find potential directions corresponding to lost Atlanta
directions or new Atlanta directions. This strategy results
in more stable tracking and enables sustainable long-term
tracks [46]. Given the input normal distribution N k, we
detect the AF Vk

D= {vd
D}

ND

d=1 that best describes the current
normal distribution by means of the number of inliers.
For this purpose, we utilize a branch-and-bound based AF

estimation method [42] that guarantees global optimality
and robustly estimates the AF even in a high noise situation.
For the sake of computational efficiency, we detect the AF
with only two horizontal directions (M = 2) and run the
detection step only when the number of tracked Atlanta
directions is less than 2 or periodically with a pre-defined
frame interval (> 30 in all of our experiments).

4.1.3 Atlanta Frame Association

The association stage consists of three steps: local associa-
tion, global association, and maintaining the AW constraint.
In the local association step, we associate the tracked AF Vk

T ,
and the detected AF Vk

D into one unified local AF Vk
L for the

current frame. In the global association step, we associate
the local AF Vk

L with the global AF VG, i.e., updating the
global AF VG and its activation labels, where the global AF
is updated by three operations: birth, revival, and death (see
example in Fig. 6(a)). In the last step, we enforce the AW
constraint on the local AF Vk

L.

Local Association. Considering the tracked AF Vk
T as the

initial local AF, we associate the detected AF Vk
D with the

local AF and find potential directions for updating the
global AF. For each detected direction vd

D ∈ Vk
D , we measure

its angular distance to the tracked AF, i.e., ∠(vd
D,v

t
T ), where

∠(·, ·) denotes the angle between two vectors. We then find
the closest tracked direction and associate two directions
vd
D and vt

T if their distance is less than an association
threshold θ (we set θ to 5◦). Otherwise, we consider vd

D as a
potential direction (potential direction set VP ) for the global
association. For instance, the orange and black directions in
Fig. 4(d) denote the associated directions and the potential
direction, respectively. If the detection step is not performed,
we directly consider the tracked AF as the local AF. The
procedure of the local association is formulated in Alg. 2.

Global Association. Through the tracking step, the cor-
respondences between the local AF Vk

L and the global
AF VG (i.e., local association lkL) are determined. Thus, based
on these relations, we can estimate the rotational motion
of the camera in the referential of the global AF (this will
be discussed in Sec. 4.2). In this referential, similarly to the
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Algorithm 2 Local association

Input: Tracked AF Vk
T ={vt

T }, detected AF Vk
D={vd

D}, and asso-
ciation threshold θ.

Output: Local AF Vk
L with its association label lkL and potential

direction VP .
1: Vk

L ← Vk
T . Initialize local AF as tracked AF

2: lkL ← lk−1
L . Initialize association label

3: Discard tracking failed direction in lkL
4: VP ← ∅ . Initialize VP
5: for each vd

D do
6: ṽt=arg minvt

T
∠(vd

D,v
t
T ) . Find the closest tracked direction

7: if ∠(vd
D, ṽ

t) ≤ θ then
8: Associate vd

D into Vk
L

9: else
10: VP ← {VP ∪ vd

D} . Add vd
D to VP

11: end if
12: end for

Algorithm 3 Global association

Input: Local AF Vk
L with its association label lkL, global

AF VGwith its activation label lG, potential direc-
tions VP={vp

P }, rotation S∗ between global Atlanta and
current coordinates, and association threshold θ.

Output: local AF Vk
L with the updated association label lkL and

global AF VG with the updated activation label lG.
1: Deactivate non-tracked direction in VG . Death operation
2: V̄G = S∗VG . Rotate VG by to the current camera coordinate
3: for each vp

P do
4: ṽg=arg minv̄

g
G)∠(vp

P , v̄
g
G) . Find the closest global direction

5: if ∠(vp
P , ṽ

g) ≤ θ then . Revival operation
6: Revive ṽg

7: Activate the corresponding activation label in lG
8: Vk

L ← {V
k
L ∪ vp

P } . Add revived direction in Vk
L

9: Add the revived direction label in lkL
10: else if ∠(vp

P , ṽ
g) > θ then . Birth operation

11: if vp
P lies on the horizon then

12: Compute angle α to define the new direction
13: Add the new direction by α in VG
14: Add the new label in lG . Update lG
15: Vk

L ← {V
k
L ∪ vp

P } . Add the new direction in Vk
L

16: Add the new direction label in lkL
17: end if
18: end if
19: end for

local association, we associate the local AF with the global
AF using their angular distance.

The detailed process is as follows (see Alg. 3). We first de-
activate non-associated directions in the global AF w.r.t. the
local AF (death operation); that is, we update the activation
label lG by setting the label of the non-tracked direction
as 0. We then transform the global AF VG into the current
camera coordinate using the estimated rotation S∗. We
denote the transformed global AF as V̄G. Similarly to the
local association, we find the closest direction in V̄G for
each potential direction vp

P . We then revive the associated
direction in the global AF if it was not activated and their
angle distance is less than the association threshold θ (revival
operation). If a potential direction vp

P is associated with
none of the directions in V̄G and lies on the horizon of V̄G,
we birth a new Atlanta direction in the global AF and make
it the valid one in the local AF (birth operation). To insert
the new horizontal direction into an existing global AF, we
project the new direction on the horizon and compute α by
measuring the angle with the first horizontal direction (α4

in Fig. 4(e) for example).

4.1.4 Atlanta World Constraint
After the association step, we initially refine each direction
in the local AF Vk

L via mode seeking during the tracking
step, after which we enforce the AW constraint. The AW
constraint forces the local AF to satisfy the AW assumption
(i.e., vv ⊥ vhm ), and allows for complete exploitation of the
structural regularities of the Atlanta world in the proposed
SLAM framework. It should be noted that without the
AW constraint module, we cannot represent the tracked or
detected Atlanta directions (local AF) using the efficient AF
parametrization by {R, {αm}Mm=2}. In addition, tracking-
by-detection without the AW constraint will induce a drift
for each direction in the local AF and result in inaccurate
rotation estimation.

To this end, we first determine an accurate representative
vertical direction,3 which defines the horizon. We project
the dominant horizontal direction, which has the maximum
density (having maximum inliers), onto the horizon and
then sequentially refine the other horizontal directions while
maintaining each relative alpha angle w.r.t. the dominant
horizontal direction. We repeat this procedure until the local
AF converges.

4.2 Robust Rotation Estimation
Using our association strategy, we have the updated global
AF VG={vg

G} and the local AF Vk
L={vl

L} with their asso-
ciation label lkL at the current frame. With a minimum of
two matched Atlanta directions, the camera rotation can be
estimated in the global AF referential as in Sec. 3.2.2. If more
directions are available, a set of rotation matrices can be
computed by sampling all possible combinations of triplets
of directions, as:

Ri = Vi
L Vi−1

G , (3)

where Vi
L ∈ R3×3 and Vi

G ∈ R3×3 represent the i-th
sampled local AF and the corresponding sampled global
AF, respectively. More concretely, given VG and Vk

L with
known association, we sample all possible combinations of
triplets of directions. We then concatenate these sampled
directions to form a 3×3 matrix. For instance, we can con-
struct V1

L = [v1
L v2

L v3
L] and V1

G = [v1
G v3

G v4
G], where each

global-local pair (v1
L ↔ v1

G, v2
L ↔ v3

G, and v3
L ↔ v4

G)
is associated. Note that we always include the vertical
direction by default in the sampling and orthogonalize Vi

L

and Vi
G to prevent a degenerate solution in Eq. (3).4

We generate a set of candidate rotations using Eq. (3) and
estimate the camera rotation by means of a single rotation
averaging [47, 48]. We use Lp−mean rotation w.r.t. d(·, ·):

S∗ = arg min
S∈SO(3)

∑
i=1

d(Ri, S)
p
, (4)

where p = 1 in our case to increase the degree of robustness
against outliers. This facilitates an accurate estimation of the
camera rotation given the candidate rotations.

3. To ensure an accurate vertical direction well supported by the
horizontal directions, we generate a set of virtual vertical direction
hypotheses from the cross products of combinations of horizontal
direction pairs. We then compute a representative vertical direction
using the weighted sum of the initial vertical direction and virtual
direction set.

4. If the vertical direction does not exist in the tracked AF, we
temporally generate the virtual vertical direction by computing the
cross product of any two horizontal directions.
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5 LINEAR RGB-D SLAM FORMULATION

Based on the understanding of the structural regulari-
ties (cf ., Sec. 4), we present a novel linear SLAM framework
for structured environments. For this purpose, we introduce
a method of detecting structure-aware planes in structured
environments in Sec. 5.1, which plays an important role in
the proposed linear SLAM approach. We then introduce a
novel SLAM approach using planar features within a linear
KF framework in Sec. 5.2. For a smooth transition and better
understanding, we first describe a linear SLAM formulation
for the Manhattan world (LMW-SLAM) and then extend it
to the Atlanta world (LAW-SLAM). The overview of the
proposed L-SLAM is illustrated in Fig. 2.

5.1 Structure-aware Plane Detection
Once the structural regularities of the scene w.r.t. the camera
pose (i.e., local AF) has been established, we can easily iden-
tify the dominant planes supporting the current structured
environments. Given the surface normals for each pixel, we
find the relevant normal vectors inside a conic section of
each Atlanta direction. We perform the plane RANSAC [50]
with the pixels corresponding to the surface normals near
each direction of the local AF. We model the plane [51] as
follows:

nxu+ nyv + nz = w (u =
X

Z
, v =

Y

Z
,w =

1

Z
), (5)

where X , Y , and Z denote the 3D coordinates, u, v, and
w correspond to the normalized image coordinates and the
measured disparity at that coordinate, and nx, ny , and nz
are the model parameters representing the distance and
orientation of the plane. The error function of the plane
RANSAC is the distance between the 3D point and the
plane. We fit the plane to the given inlier 3D points from
the plane RANSAC in a least-square fashion.

If the angle difference between the normal vector of the
plane and one of the Atlanta directions is less than 5◦, we
refit this plane to a set of measured disparity values (w)
subject to the constraint that it must be parallel to the
corresponding Atlanta direction. We compute the optimal
scale factor in a least-square manner that minimizes:

s∗ = arg min
s
‖s (rxu+ ryv + rz)− w‖ , (6)

where s is the scale factor representing the reciprocal of the
distance from the plane to the center of the camera, and ri =
[rx, ry, rz]> ∈ R3×1 denotes the x, y, and z component of
the unit vector of the corresponding Atlanta direction ri. In
this manner, we can find the structure-aware planar features
in the scene whose normals are aligned with the local AF, as
shown in Fig. 5.

It is worth noticing that this 1-D distance (scale factor)
from the camera position to each plane along the Atlanta
direction plays an important role as the measurement in the
proposed L-SLAM (cf ., Sec. 5.2.3), linearizing the complex
SLAM formulation.

5.2 Linear RGB-D SLAM for Structured Environments
5.2.1 KF State Vector Definition
The state vector in the KF consists of the current 3-DoF
translational motion of the camera and 1-D representation of

the structure-aware planar features (i.e., planar landmarks)
in the global planar map. We denote the state vector by x
with its associated covariance P:

x =
[
p>, m1, · · · , mn

]>
∈ R(3+n)×1 and

P =

[
Ppp Ppm

Pmp Pmm

]
∈ R(3+n)×(3+n), (7)

where p = [x, y, z]> ∈ R3×1 denotes the 3-DoF camera
translation in the global map frame where the rotation of the
camera is completely compensated for. In contrast to previ-
ous planar SLAM approaches, we do not include the camera
orientation in the state vector, which is the main factor that
increases the nonlinearity in the SLAM problem [17] because
we already have accurate and drift-free camera rotation in
Sec. 4.2. The map mj ∈ R1 represents the 1-D distance
(offset) between the structure-aware planar feature and the
origin in the global map frame,5 and n is the number of
structure-aware planes in the global map. Although each
structure-aware planar feature in Sec. 5.1 consists of the 1-D
distance and the alignment for the AF, we only track and
update the distance since the alignment of the structure-
aware planes does not change over time. A newly detected
structure-aware planar feature is additionally augmented
after the last map component of the state vector. It should
be noted that there are no variables related to the camera or
plane orientation in the state vector x, resulting in a linear
KF formulation.

One of the problems of using the KF in SLAM is the
quadratic update complexity in the number of features that
can limit the ability to use multiple measurements [52].
Because we model only large and dominant planar struc-
tures, such as a wall or floor with a single variable per
plane, the size of the state vector x is very small compared
to the size obtained via other EKF-SLAM approaches, as
shown in Table 1. While other EKF-SLAM methods [23]–
[26] represent the plane using a 3 to 10-D vector, the pro-
posed method models the planar landmark with only one
parameter (offset), resulting in a very low complexity. If the
number of the planar features (n) is 10, the state size of
the proposed method is approximately ten times smaller
than that of Martinez’s EKF-SLAM method [26], meaning
the EKF update is expected to be ∼100 times faster.

5.2.2 Process Model

We predict the next state based on the 3-DoF translational
movement between the consecutive frames (cf ., Sec. 3.2.2).
We propagate the 3-DoF camera translation, and assume
the map does not change. Then, our process model can be
written as follows:

xk = Fxk−1 +
[
4p>k,k−1 01×n

]>
, (8)

where F denotes the identity matrix, and 4pk,k−1 is the
estimated 3-DoF translational movement between the k and
k − 1 image frame. The covariance matrix consists of the
process noise of the LPVO approach, which indicates the
error of the estimated 3-DoF translational movement from

5. It should be noted that 1-D structure-aware distance mj differs
from the structure-aware distance in Sec. 5.1 in that the reference of mj

is the origin of the global map coordinate, i.e., not the current center of
the camera.
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(a) (c)

(b) (d)

(e) (g)(f) (h)

Fig. 5. Example of the Kalman filter components for L-SLAM. (a) Example of 3D indoor scene [49] with a specific view point (red color), and
(b) the corresponding RGB image. Results of plane detections supporting (c) the Manhattan frame and (d) the Atlanta frame are overlaid on top of
the RGB images, respectively, and (e,f) the corresponding color-coded planar features are drawn in a 3-D space, where we exclude a set of planes
describing the vertical direction for better visualization purpose. The detailed descriptions of each variable, the definition of the state vector, and the
measurement model for (g) the Manhattan world and (h) the Atlanta world in Kalman filter.

TABLE 1
Advantages of L-SLAM over existing EKF-SLAM methods.

L-SLAM (ours) [23] [24] [25] [26]

State size 3 + n 7 + 7n 7 + 9n 15 + 3n 12 + 10n
Linearity Linear Nonlinear Nonlinear Nonlinear Nonlinear

the LPVO. Currently, the process noise is manually tuned to
1 cm empirically.

5.2.3 Measurement Model
We update the state vector in the KF by observing the dis-
tance between the currently detected structure-aware planar
features and the current camera pose. For better understand-
ing, we first describe a measurement model for the Man-
hattan world; thereafter, we present a general measurement
model for the Atlanta world while maintaining the linear
property. For the sake of presentation, we assume that the
planar features supporting the vertical direction vv (= r1)
and the first horizontal direction vh1

(= r2) of the global AF
correspond to the x-axis and y-axis of the world coordinate
system, respectively. This regime is directly applicable to the
Manhattan world, as shown in Fig. 5.
Measurement Model for Manhattan World. In the Manhat-
tan case, the simplest structure, each Manhattan direction
directly corresponds to the x-axis, y-axis, and z-axis of the
world coordinate according to the above assumption. This
allows us to project the state vector into the observed space
by a simple arithmetic operation – subtraction. In other
words, a measurement model y for the mj is defined by:

y = Hx =


m1 − x
m2 − y
m3 − z

...

 ∈ Rq×1, (9)

H =


−1 0 0 1 0 0 · · ·
0 −1 0 0 1 0 · · ·
0 0 −1 0 0 1 · · ·
...

...
...

...
...

...
. . .

 ∈ Rq×(3+n), (10)

where H is the observation model that maps the state space
into the observed space, and q is the number of matched
structure-aware planar features; here, the planar features are
limited to Manhattan-support one. For example, the second

row of H indicates that the matched plane supports the y-
axis. This enables us to observe an orthogonal distance by
subtractingm2 from the current position (see yk2 in Fig. 5(g)).

Measurement Model for Atlanta World. In contrast to the
Manhattan case, additional horizontal directions vhm (m ≥
2) in the AF cannot be directly represented as a sim-
ple coordinate (e.g., x-axis); that is, a 1-D distance of the
structure-aware plane related to the additional horizontal
direction cannot be represented using the axis of the single
coordinate. This may cause non-linearity in the proposed KF
framework.

To resolve this problem, we fully exploit the efficient
parametrization of the AF (cf ., Sec. 3.2.1). Specifically, as a
key contribution, we represent planar features supporting
additional horizontal directions by the 1-D angle α and
the corresponding 1-D distance, where the y-axis is rotated
by α around the x-axis, for each horizontal direction. This
makes the horizontal direction representation linear without
additional non-linear variables in the state variable and
enables a linear formulation for the Atlanta case. Thus, we
can seamlessly extend the measurement model for the Man-
hattan case in Eqs. (9) and (10) into the general structured
environments – the Atlanta world. We formally define the
observation model H and measurement model y as:

y = Hx =


m1 − x
m2 − y
m3 − z

m4 − y cosα3 − z sinα3

...

 ∈ Rq×1, (11)

H=


−1 0 0 1 0 0 0 · · ·
0 −1 0 0 1 0 0 · · ·
0 0 −1 0 0 1 0 · · ·
0 − cosα3 − sinα3 0 0 0 1 · · ·
...

...
...

...
...

...
...

. . .

∈ Rq×(3+n),

(12)
where αm is an angle defining the m-th horizontal direc-
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tion (m ≥ 2). The entities of y are the observed 1-D dis-
tances from the structure-aware planar features computed
using the current state vector. In particular, we can linearly
observe the 1-D distance even for an additional horizontal
direction using αm. For example, we can compute (observe)
an orthogonal distance by a simple geometric relation using
the current position pk and α3, as described in Fig. 5(h) and
Eq. (12) – the fourth row of H in Eq. (12).

From the measurement model y in Eq. (11), we compute
the residual between y and the measurements ŷ (1-D dis-
tance from the current camera coordinate). We then update
the state vector of the KF for all associated structure-aware
planes with the planar landmarks in the global planar map.
Because all formulas and calculations are perfectly linear
from Eqs. (7) to (12), there is no local linearization error,
and we can easily calculate the optimal Kalman gain [53]. In
this manner, we can consistently track the 3-DoF camera
translation and 1-D planar map position efficiently and
reliably.

Our SLAM algorithm relies on the drift-free rotation
estimates in Sec. 4.2, which shows accurate and stable
rotation tracking performance (about 0.2◦ error in average)
in structured environments. We treat this small orientation
error as the measurement noise by the Kalman filter, which
removes the need to explicitly consider the correlations [54].
The measurement noise includes not only the orientation
error but also the distance measurement noise of the RGB-D
camera. Currently, the measurement error is manually tuned
to 2 cm.

5.2.4 Planar Map Management
At the beginning of L-SLAM, we initialize a state vector and
its covariance with the structure-aware planar features de-
tected at the first frame. When constructing a global planar
map, we only utilize the structure-aware planes that have
a sufficiently large area in order to accurately recognize the
dominant structural characteristics such as walls, floor, and
ceiling in the current structured environments. We perform
plane matching using the distance (offset) and alignment
from the currently detected structure-aware planar features
and the global plane map in the state vector. If the metric
distance between the two planes is less than a certain
length (in our experiments, 10 cm), and they have the same
alignment, the detected planar feature is associated with an
existing global planar map to update the state vector. The
global planar map can be extended incrementally as new
structure-aware planes are detected.

6 EVALUATION

We first validate the understanding of structural regularities
for the Atlanta world on synthetic sequences. We qualita-
tively compare the proposed tracking-by-detection scheme
and quantitatively evaluate the robust rotation estimation
using different noise cases. We then evaluate the proposed
L-SLAM on various RGB-D datasets from room-size (∼10
m) to building-size (∼100 m) structured environments:

– ICL-NUIM [10] is a room-size RGB-D dataset providing
RGB and depth images rendered in a synthetic living
room and office with ground-truth camera trajectories.
It is challenging to accurately estimate the camera pose

Time

(a)

(b)

(c)

(d)

Death

Birth

Revival Death

Birth

Death

Fig. 6. Evaluation of the proposed tracking-by-detection on the
synthetic sequence. (a) Example of generated ground truth data with
possible scenarios such as birth, death, and revival. The correspond-
ing results: (b) BnB-based AF detection method [42], (c) MF tracking
method (Manhattan only), and (d) the proposed method. In contrast to
the other comparison methods, our approach maintains a consistent
association between consecutive frames.

figure_eval_ICL_traj_all.pdf

Fig. 7. Selected motion estimation results of the proposed algo-
rithm in the ICL-NUIM dataset. The first and second columns show the
structure-aware planar features for mapping and localizing the camera
position in the proposed L-SLAM algorithm. Vertical surfaces are red or
green and horizontal surfaces are blue depending on their orientation.
The magenta and black lines in the third column represent the estimated
and the ground-truth trajectories, respectively.

because of the low-texture and artificial noise in the
depth images.

– TUM RGB-D [55] is the de facto standard RGB-D
dataset for VO/visual SLAM evaluation composed of
ground-truth camera poses and RGB-D images cap-
tured in room-scale environments.

– TAMU RGB-D [56] consists of large-scale man-made
environments such as stairs and corridors inside a
building. In particular, it includes a planar structured
scene following the Atlanta world.

– Author-collected RGB-D dataset contains RGB and
depth images at 30 Hz in large building-scale planar en-
vironments with an Asus Xtion RGB-D camera. We start
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TABLE 2
Computational time analysis.

Module Runtime
Plane detection 1 ms

Plane fitting 0.1 ms
Atlanta tracking 16 ms
Atlanta detection 180 ms

and end at the same position to evaluate loop closures
and for the sake of consistency because ground-truth
trajectories and maps are not available.

We compare our L-SLAM to other state-of-the-art
RGB-D SLAM and planar SLAM approaches, namely
ORB-SLAM2 [6], DVO-SLAM [5], CPA-SLAM [33], KDP-
SLAM [9], DPP-SLAM [8], InfiniTAM [57], BundleFu-
sion [58], ElasticFusion [59], BAD SLAM [60], and Structure
SLAM [61]. In contrast to the proposed L-SLAM, which
is based on a linear formulation, they all perform a high-
dimensional nonlinear pose graph optimization, and some
of them require GPUs for extensive computation and net-
work inference. We also show an improvement compared to
LPVO [18], which our new SLAM approach builds on. We
deactivate the capability to detect loop closures via image
retrieval in ORB-SLAM2 for a fair comparison. We test each
SLAM method with the original source code provided by
the authors while including the result of CPA-SLAM and
KDP-SLAM taken directly from [9] and [61].

6.1 Implementation Details
We implement the proposed L-SLAM method in an unop-
timized MATLAB code for fast prototyping. We run both
L-SLAM throughout the sequence on a desktop computer
with an Intel Core i7-4790K 4.0GHz CPU and 32GB of RAM.
Computational Time. To validate the computational trade-
off of the proposed SLAM approach, we analyze the com-
putational time of key components on the ICL NUIM
dataset (see Table 2); 1) plane detection and fitting and 2)
tracking-by-detection.

Plane detection and fitting are essential modules in con-
ventional plane-based RGB-D SLAM frameworks [8, 27, 32].
In our L-SLAM framework, plane detection and fitting take
∼1 ms and∼0.1 ms, respectively, which is reasonable. More-
over, considering that we utilize a structural assumption –
the MW or the AW assumptions, we can efficiently estimate
planes supporting the structural assumption.

Regarding tracking-by-detection scheme, the tracking
takes ∼16 ms. We applied manifold-constrained mean shift
algorithm [44] on the limited search space by known domi-
nant directions of the Atlanta world, which efficiently tracks
each dominant direction. On the contrary, the detection
takes ∼180 ms, which guarantees global optimality but
might be a computational bottleneck. However, we per-
form the detection when it satisfies specific conditions (cf .,
Sec. 4.1.2). Thus, it does not hinder the computational load
of the proposed SLAM (this is discussed in detail in Sec. 7.2).
Owing to the above reasons, the proposed L-SLAM works in
10 ∼ 15 Hz (near real-time)6, even though it is implemented

6. Our L-SLAM operates at above 20 Hz in LMW-SLAM , and 10 ∼ 15
Hz in case of LAW-SLAM due to the AF detection module.

TABLE 3
Robustness of rotation estimation according to variant noises. We
generate a set of synthetic sequences and compute the mean angular

error between the estimate and ground truth.

Noise type Angular error
S 0.526◦
L + W 0.502◦
S + W + O 0.515◦
S + W + D 0.534◦
S + W + O + D 0.506◦

in MATLAB.

6.2 Validation of Structural Regularities
Synthetic Data Generation. To evaluate the understanding
of structural regularities under the AW assumption, we
generate synthetic data including possible scenarios in the
association such as death, birth, and revival, as shown in
Fig. 6(a). Specifically, we define the global AF with M(=4)
horizontal directions in the world coordinate (five Atlanta
directions in total) and generate the surface normal distribu-
tions supporting the global AF, where each surface normal
distribution has a small variance. To mimic natural motions,
we generate sequential 3D rotations (600 frames in total)
and smoothen the results continuously using a rotation-
smoothing method [62]. We also set various activation labels
to evaluate the association. Given the rotations and activa-
tion labels, we rotate the global AF including the surface
normal distributions to generate the ground truth of the
local AF. We call this synthetic sequence base sequence.

In addition, we generate different types of noises that
may happen in the real world, such as white noise, dif-
ferent distribution variance, drift, and outlier (i.e., normal
distribution not following the Atlanta world). We name each
noise type using the first alphabet; for instance, ‘S’ for small
variance, ‘L’ for large variance, ‘W’ for white noise, ‘O’ for
outlier, and ‘D’ for drift. According to the difficulty, we
combine these noises to the base sequence and generate a
set of synthetic sequences, called noise sequences (the first
column in Table 3).
Evaluation. We first qualitatively evaluate the proposed
tracking-by-detection method on the base sequence. We
compare the proposed approach with the BnB-based AF
detection [42] and MF tracking [18]. As shown in Fig. 6(b),
the AF detection method independently estimates AF while
maximizing the number of inliers, thus exhibiting fluctua-
tions and an absence of consistent associations between con-
secutive frames. In contrast to the detection approach, MF
tracking relatively shows stable tracking along the sequence,
even though it fails to track when it encounters a non-
Manhattan frame, as shown in Fig. 6(c). Our tracking-by-
detection method, however, shows a stable tracking result
while identifying new or missed Atlanta directions, which
demonstrates its effectiveness in structured environments,
as shown in Fig. 6(d).

In addition, we quantitatively validate the robustness of
our system against the noise sequences in rotation estima-
tion. We perform the tracking-by-detection on each noise
sequences and then estimate the rotation using the proposed
robust rotation estimation. As shown in Table 3, our ap-
proach shows stable and accurate rotation estimation results
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figure_eval_ICL_of_kt3_3D_reconstruction.pdf

Fig. 8. Qualitative result of office room sequences from the ICL-
NUIM dataset. Left: Synthetic scene 3D reconstruction of an office
room from the ICL-NUIM dataset, displaying both planar and non-planar
regions with the estimated (magenta) and the ground-truth (black) tra-
jectories. Right: Color output, surface normal map, non-planar regions
only with gray scale, and orthogonal planar regions only with RGB scale
in clock-wise order. The ceilings are not shown for visibility.

regardless of noise types, which means that our tracking-by-
detection scheme and robust rotation estimation is robust to
various noises in the real-world. For a detailed qualitative
comparison, readers can refer to the supplementary video.

6.3 ICL-NUIM Dataset
We report the root mean square error (RMSE) of the absolute
trajectory error (ATE) [55] for the resulting camera trajecto-
ries of all living room and office sequences with noise in
Table 4. We highlight the smallest error for each sequence,
and × means the estimation failure for the corresponding
sequence. The results of CPA-SLAM, KDP-SLAM, Bundle-
Fusion, and ElasticFusion for the office are not available,
marked as − in Table 4. Note that we directly quote the
results of CPA-SLAM, KDP-SLAM, BundleFusion, and Elas-
ticFusion for a fair comparison.

CPA-SLAM, InfiniTAM, and BAD SLAM show the best
quantitative results in some living room and office se-
quences, but they all require GPU hardware for extensive
computation. In addition, InfiniTAM and BAD SLAM easily
fail to estimate the camera motion and diverge quickly when
looking at only one or two planes in the RGB and depth
images denoted as× in Table 4. In contrast, our L-SLAM can
continue estimating the camera motion stably by exploiting
lines and planes together and presents estimation results
comparable to other state-of-the-art methods without the
help of GPU computation. We plot the estimated camera
trajectories using L-SLAM (see Fig. 7), showing that L-
SLAM is comparable to other state-of-the-art SLAM ap-
proaches without a nonlinear pose graph optimization. It is
noteworthy that the RMSE of L-SLAM is sometimes larger
than the RMSE of LPVO because of the inaccuracy of planar
distance measurements caused by a simulated sensor noise
in depth images in the ICL-NUIM dataset; however, that
difference is very minor (about 2 ∼ 5 cm), and overall, the
proposed L-SLAM approach has a tendency to show more
accurate 6-DoF estimation results in most test cases.

In the office sequences, L-SLAM achieves more accurate
or similar performance to other SLAM methods because the
office environments consist of sufficient planar features. Re-
construction results of the office room sequences are shown
in Fig. 8. Although InfiniTAM performs the best owing to
sufficient texture and planar features in of-kt3n, the proposed
L-SLAM also performs nearly as well. Among the CPU-
only RGB-D and planar SLAM methods (except for CPA-
SLAM, InfiniTAM, BAD SLAM, and Structure SLAM, which

figure_eval_TUM_struc_notex_3D_reconstruction.pdf

Fig. 9. Qualitative result on fr3/str notex near of the TUM RGB-
D dataset. Top and side views of the global 3D planar map generated
by the proposed L-SLAM algorithm from fr3/str notex near (left). The
structure-aware planar features are overlaid on top of the original im-
ages of the respective scenes in clockwise order (right).

figure_eval_TUM_traj_all.pdf

Fig. 10. The estimated camera trajectories on the TUM RGB-
D dataset. The estimated camera trajectories with L-SLAM (ma-
genta) and ground-truth (black) for the TUM RGB-D dataset in clock-
wise order: fr3/str notex far, fr3/str notex near, fr3/large cabinet, and
fr3/str tex far.

require a GPU), L-SLAM presents the lowest average trajec-
tory error. The resulting camera trajectories with L-SLAM
are shown in Fig. 7, demonstrating that L-SLAM, with an
efficient and linear KF, is comparable to other recent SLAM
approaches especially for highly-planar environments.

It is noteworthy that both LMW-SLAM and LAW-SLAM
were demonstrated in this experiment, but considering that
we do not know which structural assumption a given
scene follows, LAW-SLAM is more appropriate in real-world
indoor applications. In this regard, the performance gap
between LAW-SLAM and other existing methods may be-
come smaller. However, our approach still shows compa-
rable results and has its own advantages, such as linear
formulation and generation of planar maps supporting the
Atlanta world.

6.4 TUM RGB-D Dataset
We choose several RGB-D sequences in the environments
where the planar features are sufficiently present in the
TUM RGB-D dataset [55]. Table 5 compares estimation
results of the SLAM approaches. ORB-SLAM2, BundleFu-
sion, and BAD SLAM show good quantitative results in
texture-rich scenes such as fr3/str tex far, which is entirely
expected as L-SLAM utilizes a much cheaper approach.
While L-SLAM shows a comparable performance even in
fr3/str notex near poorly-featured environments, as shown
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TABLE 4
Evaluation Results of ATE RMSE (unit: m) on ICL-NUIM Benchmark. ATE RMSEs are measured. Lower is better (unit: meter).

Sequence lr-kt0n lr-kt1n lr-kt2n lr-kt3n of-kt0n of-kt1n of-kt2n of-kt3n

ORB-SLAM2 0.010 0.185 0.028 0.014 0.049 0.079 0.025 0.065
DVO-SLAM 0.108 0.059 0.375 0.433 0.244 0.178 0.099 0.079
CPA-SLAM 0.007 0.006 0.089 0.009 – – – –
KDP-SLAM 0.009 0.019 0.029 0.153 – – – –
InfiniTAM × 0.006 0.013 × 0.042 0.025 × 0.010
BundleFusion 0.009 0.012 0.013 0.013 – – – –
ElasticFusion 0.009 0.009 0.014 0.106 – – – –
BAD SLAM × 0.005 0.014 × × 0.013 0.019 0.013
Structure SLAM – 0.016 0.045 0.046 – × 0.031 0.065
LPVO 0.015 0.039 0.034 0.102 0.061 0.052 0.039 0.030

LMW-SLAM 0.012 0.027 0.053 0.143 0.020 0.015 0.026 0.011
LAW-SLAM 0.014 0.035 0.027 0.117 0.036 0.022 0.027 0.025

TABLE 5
Evaluation Results of ATE RMSE (unit: m) on TUM RGB-D Benchmark.

Sequence fr3/str notex far fr3/str notex near fr3/str tex far fr3/str tex near fr3/cabinet fr3/large cabinet

ORB-SLAM2 0.276 0.652 0.024 0.019 × 0.179
DVO-SLAM 0.213 0.076 0.048 0.031 0.690 0.979
InfiniTAM 0.037 0.022 × × 0.035 0.512
BundleFusion × × 0.041 0.068 × ×
BAD SLAM 0.189 0.034 0.044 0.034 0.059 0.206
Structure SLAM 0.281 0.065 0.014 0.014 × ×
LPVO 0.075 0.080 0.174 0.115 0.520 0.279

L-SLAM (ours) 0.141 0.066 0.212 0.156 0.291 0.140

(a)

(b)

(c) (d)

(e)

(f)

Side view

Top-down view

Fig. 11. Evaluation on two representative sequences (Corridor-A-const and Auditorium-const) in the TAMU RGB-D dataset [56]. (a,d) Sam-
pled RGB images. (b,e) Estimated Atlanta planar map with sampled camera trajectories by LAW-SLAM. (c,f) Estimated trajectories compared to
LMW-SLAM and ORB-SLAM2 [6]. It shows that our LAW-SLAM provides a more stable and accurate estimation of the trajectories.

in Fig. 9, the accuracy of ORB-SLAM2 and BundleFu-
sion show a significant drop. In fr3/cabinet, ORB-SLAM2
and Structure SLAM fail to estimate the camera trajec-
tory (marked as × in Table 5). BundleFusion shows good
quantitative results in some TUM sequences obtained in an
environment with sufficient textures. However, it easily fails
to estimate the 6-DoF camera pose on some TUM sequences
(like fr3/str notex far) in structured environments with in-
sufficient texture. BAD SLAM and Structure SLAM also
show good quantitative results in some TUM benchmark,
but they all require GPUs for extensive computation and
network inference.

Although inaccurate planar distance measurements in L-
SLAM sometimes cause slight performance degradation of

LPVO, L-SLAM is generally more accurate compared with
LPVO on average. Figure 10 presents the estimated trajecto-
ries using L-SLAM from fr3/large cabinet, showing that the
proposed L-SLAM consistently presents comparable results
regardless of the existence of sufficient texture without the
help of GPU computation.

6.5 TAMU RGB-D Dataset

We validate our L-SLAM (both LMW-SLAM and LAW-SLAM)
with BAD SLAM and Structure SLAM on Corridor-A-const
and Auditorium-const sequences that contain texture-less
walls and stairs in planar environments. In particular, we
demonstrate that our extension to the Atlanta world, LAW-
SLAM, seamlessly works well under the Atlanta world as
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Perspective view

Top-down view

Fig. 12. Qualitative result of LAW-SLAM on the Auditorium-const
sequence in the TAMU RGB-D dataset [56]. Left : The estimated At-
lanta structure (five Atlanta directions in total) by the proposed tracking-
by-detection scheme, where the red arrow denotes the vertical direction
and the others indicate the observed horizontal directions. Right : The
estimated camera trajectory and global planar map, where we visualize
the planar features supporting the Atlanta structure of the scene, and
these planes are also color-overlaid on the sampled images. For visual-
ization purposes, we only display a sampled camera trajectory, omit the
planar maps supporting the vertical direction, and approximately obtain
the plane boundaries as a pseudo representation.

well as the Manhattan world. We only undertake a qual-
itative evaluation as the TAMU RGB-D dataset does not
provide the ground truth.

For Corridor-A-const (Fig. 11–left), in a challenging envi-
ronment such as the low-texture walls and insufficient plane
features, both LMW-SLAM and LAW-SLAM show stable and
accurate estimation results because the sequence satisfies
the MW assumption. In contrast, ORB-SLAM2 shows drifts
owing to the lack of texture on the walls, which yields a bi-
ased keypoint distribution. Because the BAD SLAM requires
three orthogonal planes to fully constrain the 6-DoF camera
motion, it easily fails to estimate the camera motion and
diverges quickly when looking at only one or two planes
in the RGB and depth images, resulting in overall motion
estimation failure, as shown on the left-hand side of Fig. 11.
The proposed L-SLAM, however, can continue estimating
the 6-DoF camera motion stably even when looking at
only a single plane by exploiting points, lines, and planes
altogether, and presents comparable estimation results com-
pared to the other state-of-the-art methods without the help
of GPU computation.

For Auditorium-const (Fig. 11–right), LMW-SLAM and
Structure-SLAM lost the track and estimation when it en-
countered a non-Manhattan part of the scene as can be
inferred from the non-orthogonal walls in Fig. 12. Fur-
thermore, it could not recover, even after a single failure
because of the absence of a detection mechanism. ORB-
SLAM2 shows a reasonable trajectory in this sequence but
accumulates significant drift (∼3 m) owing to the texture-
less stairs and walls (see the side view of the green-colored
trajectory in Fig. 11(f)). By virtue of the proposed tracking-
by-detection strategy, LAW-SLAM continues to track the AF
while dealing with new Atlanta directions of the scene,
leading to a robust estimation of the camera poses. Our LAW-
SLAM is comparable to the BAD SLAM approach without
a nonlinear pose graph optimization and complex GPU
computation. In addition, the estimated global planar map
in Fig. 12 shows that LAW-SLAM reconstructs the 3D scene
structures properly.

Fig. 13. Comparison on the author-collected RGB-D dataset. Es-
timated trajectories with the proposed and other RGB-D SLAM ap-
proaches on the author-collected dataset in a single-loop (left) and
multiple-loop (right) sequences. We start and end at the same position
marked in the black circle to check loop closure and the consistency in
the resulting trajectories. With L-SLAM, the starting and ending points
nearly match; for the others, they do not. Our L-SLAM stably and accu-
rately tracks the 6-DoF camera motion, preserving the orthogonality of
the estimated corridor trajectory in the square building.

figure_eval_ICSL_corridor_all.pdf

Fig. 14. Qualitative result on the author-collected RGB-D dataset.
Accumulated 3D point cloud with the estimated trajectory (magenta) on
the author-collected RGB-D dataset in a long corridor sequence. The
3D geometry of the long corridor with the doors is consistently aligned
over time while the challenging on-the-spot rotations (top-left) occur. For
the sake of visibility, the ceilings in blue are not shown in the 3D point
cloud.

6.6 Author-collected RGB-D Dataset

We provide the qualitative 3D reconstruction results gener-
ated by L-SLAM with the trajectories of a square corridor
sequence obtained via other RGB-D SLAM methods, using
trajectory lengths of 90 m, as shown in Fig. 13. L-SLAM
maintains the structure-aware planar structure and signifi-
cantly reduces the drift error in the final position compared
to DVO-SLAM, ORB-SLAM2, and Structure SLAM. Owing
to insufficient texture and structural conditions, BundleFu-
sion and BAD SLAM fail to track the 6-DoF camera pose
from the first image frame. There is no sudden jump or
broken estimated camera trajectory from ORB-SLAM2 be-
cause we intentionally turn off the loop closing module. The
drift error of ORB-SLAM2, however, gradually increases
over time; the start and end points meet only with the pro-
posed SLAM approach, with a final drift error under 0.7 %
in this multiple-loop sequence. Although DPP-SLAM [8]
shows the second best trajectory estimation results, it only
works well in such a 2-D environment with little change in
camera height; otherwise, it fails in all sequences from ICL-
NUIM and TUM RGB-D dataset. With L-SLAM, the start-
ing and ending points nearly match without loop closure
detection; for the others, they do not. Figure 14 shows an
approximately 120-m long corridor trajectory consisting of
the forward camera motion and on-the-spot rotations. We
demonstrate that L-SLAM can accurately track the camera
pose and the global infinite planes in the map by preserving
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figure_eval_AR_exam.pdf

(a) (b) (c)

Fig. 15. Augmented reality (AR) applications. AR implementation and rendering results on the author-collected RGB-D dataset (a,b), and the
ICL-NUIM dataset (c) with the animals, ISS, and sofa 3D objects. We exploit the 6-DoF camera pose tracking obtained by our proposed SLAM
method as key information to render the 3D virtual objects in the real world. Note that any arbitrary 3D objects can be used.

the planar geometric structure of indoor environments in a
much more efficient and cheaper way within a linear KF
framework.

6.7 Augmented Reality with Linear RGB-D SLAM
We further apply the proposed L-SLAM to AR to effectively
demonstrate its practical usefulness. Currently, most com-
mercial VR/AR products such as Oculus Rift and HTC Vive
must use external devices to track the 3-DoF translational
movements of the head; however, the AR implemented
using the proposed L-SLAM algorithm enables full 6-DoF
head tracking only with the onboard RGB-D sensor sim-
ilar to HoloLens, which is one of the most advanced AR
headsets. The only requirements of the proposed method
are the highly-planar environments, and such geometric
characteristics can be found easily in most structured indoor
environments.

To perceptually obtain a better assessment, we carefully
select a 3D object fixed to the wall or floor in the tested
environments. We obtain 3D models of the international
space station (ISS), Elk’s head, and Hiroshima sofa from the
3D Warehouse website [63], and render the 3D objects as an
image with the Open Scene Graph [64]. Figure 15 shows a
consistent view of the 3D models irrespective of where we
look, because of the accurate 6-DoF camera motion tracking
with respect to the current structured environments from
the proposed SLAM method, suggesting a potential for
VR/AR applications.

7 DISCUSSION

7.1 Degenerate Cases
Slant Plane. A large slant plane may exist in the structured
environments under consideration, and we can consider a
slant plane as an outlier distribution that does not follow
the Atlanta world. In the proposed L-SLAM framework, our
tracking-by-detection can handle this outlier distribution to
a certain level. More specifically, when we encounter a slant
plane, the dominant direction supporting outlier distribu-
tion of the slant plane can be detected as a local AF in the
detection step; however, this outlier dominant direction will
be filtered out during the association step. Because it does
not follow the tracked AF (i.e., global AF). Thus, we can
handle this slant plane issue. We test this outlier case on
the synthetic data (cf ., Sec. 6.2), where our method shows
stable tracking-by-detection performance. Please refer to the
supplementary video.

However, if we encounter this kind of slant plane at the
first frame (initialization step), our method will recognize

this outlier direction as a global AF, resulting in the failure
of L-SLAM. We believe that this is a rare real-world scenario
that can be easily avoided.

Insufficient Plane. Depending on the viewpoint, we may
observe only vertical planes (walls); insufficient plane fea-
tures. The proposed L-SLAM framework based on Kalman
filter predicts the camera position and updates it using
visible planes (i.e., measurement). Thus, L-SLAM can update
the camera position from vertical planes even if neither the
ground plane nor ceiling plane (horizontal planes7) visible
in the image. However, it may not be effective for refining
the vertical position.

Fortunately, the proposed L-SLAM framework can com-
pensate for the vertical position using the global planar
map. Specifically, whenever we recognize any horizontal
plane matching with planar landmarks in the global planar
map, we can properly refine the vertical position w.r.t. the
horizontal plane without any loop closure, which is one of
our contributions.

7.2 Limitations

Lack of Structural Regularities. Camera rotation estima-
tion relies on the detection and tracking of the dominant
directions of man-made scenes in L-SLAM. Thus, L-SLAM
may fail to if enough planes or vanishing directions can-
not be detected. Specifically, L-SLAM needs to track two
dominant directions from surface normals or vanishing
directions at least. Otherwise, we cannot accurately estimate
the camera rotation.

In this work, we assume that structured environments
follow the AW assumption, which can describe a given
scene as floor (ceiling) planes and a set of walls orthogonal
to the floor. It is a natural and reasonable assumption
in structured environments; moreover, compared to recent
works [61, 65] limited by the Manhattan world, the pro-
posed L-SLAM works in a more general environments, i.e.,
the Atlanta world. Thus, we believe that the structured envi-
ronments under consideration usually have enough planes
or vanishing directions.

However, the camera might sometimes look only one
plane without line features, which is an extreme case and
rarely occurs. Fortunately, in the case of a single plane
for consecutive frames, we can assume that the rotational
motion of the camera remains unchanged. Thus, when
we sequentially observe one plane (i.e., only one Atlanta

7. Any flat surface on objects (e.g., table) can be a horizontal plane. It
is not limited to ground or ceiling planes.
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direction is tracked), our method maintains the previous
rotation for certain frames (we set the maximum to 50
frames). This scheme might cause rotation errors; however,
when we recover or observe additional Atlanta direction,
our approach can align the global AF and observed local
AF, which compensates for the potential rotation error.

Detection Runtime. In the proposed SLAM framework,
we utilize the BnB-based Atlanta detection approach [43],
robust to outliers but suffering from high computational
complexity. A naı̈ve way to alleviate the complexity would
be to optimize the implementation (i.e., MATLAB to C++).
For a more advanced approach, we can exploit the estimated
vertical direction as a priori information and then detect
potential horizontal directions only. Joo et al. [43] showed
that fewer DoFs could significantly reduce the computa-
tional time; that is, by using prior information of 1-DoF of
the vertical direction, we can efficiently restrict the search
space, which relieves the overall computational time of
Atlanta detection. It could result in a less accurate detection
performance, but the association step in the tracking-by-
detection can compensate for this phenomenon.

It should be noted that our main contribution is to
design a SLAM framework using structural regularities of
the structured environments. In other words, we can replace
this detection module with any advanced or efficient one.

7.3 LMW-SLAM vs. LAW-SLAM

In general, LMW-SLAM and LAW-SLAM show a small and
reasonable performance gap, as shown in Table 4 quanti-
tatively and Fig. 11(c) qualitatively. However, their perfor-
mances sometimes have a large difference between them.
For example, in of-kt0n, LMW-SLAM shows better perfor-
mance, but vice versa in lr-kt3n.

Basically, LMW-SLAM exploits three orthogonal direc-
tions supporting the Manhattan world, while LAW-SLAM
estimates the underlying unknown structural regularities of
Atlanta world within the SLAM framework. In other words,
in contrast to LMW-SLAM, LAW-SLAM estimates unknown
additional horizontal directions, which allows us to perceive
additional planar measurements and formulate a linear
SLAM framework under the Atlanta world. On the con-
trary, it may generate inaccurate planar measurements even
though several validation steps (cf ., Sec. 5.1) are involved,
which can cause performance degradation. We believe that
this is a trade-off between LMW-SLAM and LAW-SLAM.

8 CONCLUSION

We present a new, linear KF SLAM formulation that jointly
estimates the camera position and global infinite planes in
the map by compensating for the rotational motion of the
camera from structural regularities in the planar environ-
ments. By measuring the distance from the planar features,
we update the 3-DoF camera translation and the position of
the associated global planes in the map. In addition, we have
seamlessly extended the linear SLAM for the Manhattan
world into the more general Atlanta world via a robust
and efficient tracking-by-detection algorithm. The extensive
evaluation has demonstrated the superior performance of

the proposed SLAM algorithm in a variety of planar envi-
ronments, especially in maintaining its efficiency without
the use of expensive nonlinear SLAM techniques.
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