

A Comparison of Deep Learning-based Monocular Visual Odometry Algorithms

Eunju Jeong, Jaun Lee, and Pyojin Kim Department of Mechanical Systems Engineering, Sookmyung Women's University

Motivation

Contributions

▲ Source: Dilly Drive Robot, BAEMIN

- Development of indoor/outdoor service robots
- Difficulties of deployment in challenging real-world environments
- Identify the most robust VO Algorithm in real-life challenging environments
- The results and conclusions provide insight for research in expanding the types of environments where autonomous robots can traverse

Pipelines of DL-based VO Algorithms

Datasets

1. KITTI Datasets

▲ Outdoor Urban Environments

2. Author-Collected Datasets

(E) Sequence 04 (F) Sequence 05

(G) Sequence 06

Challenging Real World Environments (Glass Wall, Illumination Change, Dynamic Objects)

Evaluation

-10

1. KITTI Datasets

2. Author-Collected Datasets

		KITTI datas		
Algorithm	Error	09	10	Avg
DeepVO [10]	ATE (m)	30.70	22.76	26.73
	RPE (m/s)	0.831	1.002	0.917
	Runtime (s)	299.886	223.522	261.704
SfMLearner [12]	ATE (m)	61.69	4.38	33.04
	RPE (m/s)	0.215	<u>0.069</u>	<u>0.142</u>
	Runtime (s)	173.502	135.301	154.402
SC-SfMLearner [1]	ATE (m)	<u>22.75</u>	12.00	<u>17.38</u>
	RPE (m/s)	<u>0.190</u>	0.115	0.153
	Runtime (s)	66.022	58.946	62.484
DF-VO [11]	ATE (m)	7.91	4.38	6.15
	RPE (m/s)	0.093	0.048	0.071
	Runtime (s)	278.091	207.790	242.941

		Glass		Illumination		Dynamic			
Algorithm	Error	00	01	02	03	04	05	06	Avg
DeepVO [10]	ATE (m) RPE (m/s)	$\frac{1.80}{0.028}$	0.95 0.033	3.01 0.036	1.69 0.024	$\frac{0.83}{0.071}$	10.79 0.042	30.67 0.083	6.99 0.045
SfMLearner [12]	ATE (m) RPE (m/s)	4.03 0.026	0.52 <u>0.022</u>	1.35 0.023	1.87 0.016	0.59 0.060	11.70 0.040	2.45 0.015	<u>3.22</u> <u>0.029</u>
SC-SfMLearner [1]	ATE (m) RPE (m/s)	2.63 <u>0.027</u>	0.60 0.026	1.62 0.029	$\frac{1.35}{0.018}$	2.35 <u>0.058</u>	25.32 <u>0.030</u>	7.89 0.026	5.97 0.031
DF-VO [11]	ATE (m) RPE (m/s)	1.66 0.034	<u>0.55</u> 0.016	<u>1.53</u> <u>0.026</u>	0.71 0.021	1.24 0.022	4.71 0.021	<u>4.99</u> <u>0.022</u>	2.20 0.023