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Abstract— This paper proposes an edge-based robust RGB-D
visual odometry (VO) using 2-D edge divergence minimization.
Our approach focuses on enabling the VO to operate in more
general environments subject to low texture and changing
brightness, by employing image edge regions and their image
gradient vectors within the iterative closest points (ICP) frame-
work. For more robust and stable ICP-based optimization, we
propose a robust edge matching criterion with image gradient
vectors. In addition, to reduce a bad effect of outlier residuals,
we propose an improved edge registration problem of 2-D
edge divergence minimization in the manner of an iterative re-
weight least squares (IRLS) motion estimation. To accelerate the
proposed approach, a pixel sub-sampling method is employed.
We evaluate estimation performance of our method in changing
brightness conditions and low-textured scenes. Our approach
shows more robust motion estimation than state-of-the-art
methods while maintaining comparable accuracy in challenging
image sequences at real-time (25 Hz) operation.

I. INTRODUCTION

Camera motion estimation from consecutive images,
known as visual odometry (VO) [1], is receiving increasing
attention in areas of autonomous robots [13] and virtual
and augmented reality (VR/AR) applications requiring self-
localization abilities [3], [4]. A main interest of the VO re-
search has been on improving the estimation accuracy while
maintaining the real-time applicability. Consequently, several
algorithms are developed with competitive performance in
real-time applications using various settings, such as mono
[5], [6], stereo [7], and RGB-D cameras [8], [9].

However, most VO algorithms still depend on two main
assumptions; consistent brightness and feature-abundant
scenes. The first one can be easily violated in cases of in-
and-out movement and auto-exposure adjustments causing
sudden brightness changes. Furthermore, texture-less scenes,
such as monotonous walls and ceilings, make the second
assumption invalid. If these assumptions are violated, the VO
performance is significantly degraded and the VO might even
lose track of the motion estimation. Thus, comprehensive
consideration of robustness is required in order to make use
of the VO in more general situations.

In this paper, we focus on enhancing the robustness of
the VO against both low-textured and changing brightness
circumstances. From the fact that image edge features can
be observed more naturally and stably than points and lines
in low-textured scenes, we utilize edge pixels of reference
and current images to estimate successive camera motions.
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This kind of motion estimation approach registering a pair of
point clouds, such as edge pixels, is called an iterative closest
points (ICP) algorithm [10]. To bootstrap the ICP-based
motion estimation, exact pixel correspondences between a
pair of edges are required. If the camera motion is sufficiently
small between two images, the correspondences can be
efficiently determined by comparing the neighboring pixels
of a pixel of interest. However, sufficiently small camera
motions are not always guaranteed in general situations.
Consequently, the vicinity test becomes vulnerable to wrong
pixel matching and the overall estimation performance can be
degraded considerably. To match the edge pixels regardless
of large camera motions, we suggest a robust pixel matching
criterion using image gradient vectors which are invariant to
the changing absolute brightness values of images.

Different from other edge-based VO methods, we formu-
late a new cost minimization problem using a 2-D image
edge divergence, which is a form of a signed distance
residual and allows to use an iterative optimization method,
such as the Levenberg-Marquardt algorithm [11]. In this
framework, camera motion can be robustly recovered using
an iterative re-weight least squares (IRLS) suppressing out-
lier residuals with a robust weight function. Furthermore,
we improve the real-time applicability of our approach
upto 25 Hz by sub-sampling edge pixels and adaptively
changing parameter settings during motion estimation while
maintaining accurate estimation.

Main contributions can be summarized as follows:
• Robust and fast edge-based VO against both irregular

brightness changes and texture-less scenes, running at
25 Hz on a single CPU laptop setting.

• Improvement on the pixel matching rate in large mo-
tions by proposing a robust pixel matching criterion.

• Introduction of a new signed residual with 2-D image
edge divergence, which enables a robust motion update
using the IRLS framework.

• Extensive performance evaluations and comparisons
with the state-of-the-art VO algorithms using TUM
RGB-D benchmark [12] including low-textured and
changing brightness sequences.

A. Related Works

General feature-based & direct VO: Most VO
approaches can be divided into largely two streams;
sparse feature-based and dense direct methods. The
feature-based methods generally utilize a basic structure
which was firstly suggested in [1]; extracting sparse image
feature points, matching them, and finding camera motions
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by triangulations. These methods have been actively
investigated in autonomous robots [13], [14] as well as
computer vision applications, such as VR (virtual reality)
and AR (augmented reality) [2], [3], due to the their intuitive
framework and low computational costs.

On the other hand, in direct methods, almost all pixel
brightness information is used to recover camera motions
within a minimization problem of the sum of squared photo-
metric error between two images [8]. The optimization-based
framework of direct methods provides sub-pixel accuracy,
however, they require heavy calculations to handle all pixel
photometric information on images. With exponentially in-
creasing computing power recently, several researchers have
been motivated to develop direct methods [9], [15], [16]
with an enhanced real-time capability. To combine both
advantages of feature-based and direct methods, a hybrid
approach [5] is suggested, which shows faster and more
accurate performance.

Although they significantly improve the accuracy and real-
time applicability, most of aforementioned VO systems are
designed with two main assumptions: 1) consistent bright-
ness and 2) availability of abundant features. Thus, they
could yield worse performance in challenging conditions
such as varying brightness and rare textures.

Robust VO: To relieve the limiting assumptions of VO,
several works move the focus toward the robust VO systems.
To avoid the first assumption, the globally-uniform illumi-
nation changes are considered [16], [17]. Patch-based VO
is suggested with a linear illumination model to compensate
local brightness changes in [17], and camera intrinsic factors
affecting image illumination changes are considered to treat
camera auto-exposure and vignetting effect in [16]. Although
[17] shows robust performance even in the case of sudden
changes of brightness, it still relies on feature-abundant
scenes, and [16] has a difficulty to deal with locally irregular
changes of brightness. Other works attempt to relieve the
second assumption by utilizing more generalized features,
such as lines and surface normal vectors [18], [19]. [18]
blends lines with semi-direct visual odometry [5] to improve
the stability in texture-less scenes, and [19] develops a
stereo VO using multiple lines. Despite the consideration
of robustness to low-textured scenes, [18] depends on the
consistent illumination assumption because it is based on
[5], and [19] relies on the sufficient number of straight lines.

Edge-based VO: There are several works utilizing edge
features to operate VO in more general environments. In
[20], the sum of squared distances of a pair of edges plays a
part of an optimization constraint to prevent a direct method
updating motions toward a wrong direction in low-textured
scenes. [21] makes a very fast intensity-assisted ICP-based
VO utilizing intensity patterns near edge pixels. Both works
show robust performance in low-textured scenes due to an
additional geometric constraint from edge pixels. Still, they
use the absolute intensity information, therefore, their perfor-
mance might be degraded in changing brightness conditions.
Other edge-based approaches try to relieve several issues
that occur when utilizing the image edges into the VO
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Fig. 1: The geometric relationships among pixel points and camera
frames. The objective of the proposed approach is to find consecutive
camera motions grr,n using image edge pixels.

system. [22] gives attention to a non-differentiable nature
of Euclidean distances widely used in the edge-based VO
such as [20], [21], and relieves this issue by a sub-gradient
method. In [23], an approximated nearest neighbor field is
suggested to enable a time-efficient and non-parametric edge
pixel matching. From the perspective of robustness, there is
a still remaining limitation that [23] depends on absolute
brightness information to extract semi-dense regions.

In summary, there has not been comprehensive simultane-
ous consideration for both robustness to illumination changes
and low-textured scenes.

II. PRELIMINARIES

We introduce notation rules referred throughout the paper
and describe geometric relationships of consecutive cameras
and edge pixel coordinates in 3-D space. We define all
vectors as column vectors and write them in bold. Let Cn
denote the n-th camera coordinate frame and a superscript
(·)n denotes a variable represented in the n-th camera
coordinate frame. Especially, (·)0 means an inertial reference
frame which is equal to the first camera coordinate frame.
In addition, a single-subscript (·)i refers to the i-th element
of a set of specific variables. To describe an inter-frame 3D
rigid body motion of cameras, let a double-subscript (·)r,n
mean a camera motion from the r-th frame to the n-th frame.
With these notations, we develop a camera model and a
parametrization of rigid body motions among cameras.

A. Camera Model and 3-D Motion among Cameras

A value of a gray-scale image and its depth map on the
i-th 2-D image pixel coordinate of the k-th camera frame
pki ∈ R2×1 from a RGB-D camera at a specific time epoch
n are represented as Ik

(
pki
)

and Dk
(
pki
)
, respectively.

The relationship between pki and corresponding 3D point
Xki represented in the k-th camera coordinate frame can be
represented by a perspective camera projection pki = π

(
Xki
)
.

Its inverse map re-projecting the pki into the 3D space at
epoch n is denoted as Xki = π−1

(
pki , Dk

(
pki
))

.
Additionally, we define each element of an image gradient

on pki along each axis of a pixel coordinate frame as Gku
(
pki
)

and Gkv
(
pki
)
, respectively, and their vector forms can be

represented as Gk
(
pki
)

and be achieved by Sobel operators.
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(a) (b) (c) (d)
Fig. 2: Results of edge extractions. (a) images with different brightness, (b) Sobel edge algorithm, (c) Difference of Gaussian, (d) Canny algorithm.

We use a Lie group grr,n ∈ SE(3) and a Lie algebra
ξrr,n ∈ se(3) to describe a relative 3D motion from the r-
th to the n-th camera coordinate frames. We also define a
warping function transferring pni into a corresponding pixel
coordinate represented in the r-th pixel coordinate,

w
(
ξrr,n,p

n
i

)
= π

(
g
(
ξrr,n
)
·
[
π−1 (pni , Dn (pni ))

T
, 1
]T)

,

(1)
where we expand the projection function π to a homogeneous
coordinate of 3-D point.

B. ICP-based Camera Motion Estimation

To utilize edge pixels for the camera motion estimation,
we first have to find correspondences between reference and
current edge pixels. We can determine the most probable
matching candidate of a pixel coordinate pn of the current
n-th image frame by searching the nearest pixel coordinate
among a set of reference pixels R, i.e. by Nearest Neighbor
(NN) searching [10]. We define a function yielding the
nearest pixel of the current pixel coordinate pn on the
reference frame as,

near
(
ξrr,n,p

n
)
∈ R. (2)

We can search the nearest pixel by minimizing a distance
function dist (·) as below:

near
(
ξrr,n,p

n
)

= arg min
pr∈R

dist
(
w
(
ξrr,n,p

n
)
,pr
)
. (3)

In most NN searching algorithms, the distance function is
commonly defined as a form of 2-norm of the pixel Euclidean
distance [10]. If the point sets of reference and current
images are sparse and the camera motion is sufficiently
small, using the pixel Euclidean distance is enough to find
correct correspondences. However, according to [21] and
our experiences, using it solely does not give a reliable
matching when the point sets are complexly distributed
and the sensor motion is relatively large. We will closely
discuss it and relieve the issue by proposing a robust edge
pixel matching criterion with image gradient vectors in the
following sections.

The core concept of the ICP-based motion estimation is
to find a rigid body motion ξrr,n minimizing a sum of edge
pixel distances of N number of matched pairs of edge pixel

coordinates. The objective function E can be written as

E = dTd =

N∑
i=1

d2i . (4)

The i-th element di of the 2-norm distance vector d ∈ RN×1
is

di = ‖w
(
ξrr,n,p

n
i

)
− near

(
ξrr,n,p

n
i

)
‖, (5)

and the camera motion ξrr,n can be obtained by minimizing
E with respect to ξrr,n.

If the correspondences are correctly established, the min-
imization of the objective E can be simply performed in a
closed-form by the Singular Value Decomposition (SVD) as
noted in [10]. However, wrong matchings inevitably emerge
and mislead overall estimation into wrong local minima.
Thus, the problem is naturally converted into the IRLS
optimization to suppress the bad influence of outliers via
robust residual weighting [9], [21]. As mentioned in [22],
[23], however, the sum of Euclidean distances in Eq. 4 is not
a proper form of the residual for gradient-based optimization,
such as the Levenberg-Marquardt algorithm, due to the non-
negativeness of the Euclidean distance. We circumvent this
issue via an idea of 2-D edge divergence minimization,
which invokes a signed residual proper for gradient-based
approaches. More detailed descriptions about how to relieve
the mentioned issues are explained in the following sections.

III. ROBUST VISUAL ODOMETRY MINIMIZING 2-D EDGE
DIVERGENCE

This section explains the entire framework of the proposed
robust visual odometry using the 2-D image edge divergence
minimization.

A. Image Edge Region Extraction

Several VO algorithms make use of image edges for the
camera motion estimation [20], [22]. In those works, a main
reason for selecting edge features is the fact that edges can
be more naturally observed than points and lines even in low-
textured scenes. For similar reasons, we intend to utilize the
robust characteristic of image edges.

There exist several edge extraction methods, such as Sobel
edge algorithm, zero-crossing Difference of Gaussian (DoG)
method, and Canny algorithm. Edge extraction results with
two different illumination settings are shown in Fig. 2.
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−180° 180°Image gradient direction

Fig. 3: Directions of image gradient vectors on edge pixels visualized
with colors. As can be seen in lower images, image gradient directions
are clearly and consistently observed regardless of illumination changes.
Especially, the most cluttered region near the plant can be characterized by
image gradient vectors well.

The results of the Canny algorithm show the most reliable
performance among three methods because it locally finds
the strongest edge pixels by non-maximum suppression of
high gradient regions. Furthermore, the Canny algorithm
shows robustness against brightness changes using a double-
thresholding scheme for finding edge pixels while the others
are not consistent because they use a single threshold value
for edge detection, which is vulnerable to changes of the
absolute brightness. Based on this analysis, we can conclude
the Canny algorithm is the most proper edge extractor for
the proposed VO framework.

B. Robust Edge Pixel Matching using Image Gradient Vec-
tors

One of the key parts of the proposed algorithm is to
find correct edge pixel correspondences, i.e. NN searching,
between reference and current frames. As already noted
in section II-B, the Euclidean distance is widely used to
measure how similar a current point is with reference points
in various ICP-based VO algorithms [10], [20]. It is straight-
forward to implement and shows reasonable performance in
the case of sufficiently small camera motions and sparse
point sets like [10]. But if the edge pixel distribution is
complex and dense, wrong matchings often emerge because
there can be edge pixels closer than the correct candidate.
While points and lines can be clearly distinguished and
matched by feature descriptors, no apparent descriptor for
edges has been proposed yet.

To accurately find the edge correspondences in large
motions and complex scenes, we suggest a robust criterion
to distinguish and match edge pixels using image gradient
directions. In accordance with the fact that edge regions
have prominent image gradient magnitudes and regularly
aligned directions as depicted Fig. 3, we consider not only
the pixel 2-D Euclidean distance but also inner products of
image gradient directions on the edge pixels when calculating
the distance function in Eq. 3. The augmentation of image
gradient directions can be an effective edge descriptor to

distinguish each pixels.
We propose a new distance function as

dist(pr,pn)=
‖pr−p′‖2

width2
+
γ

4

∥∥∥∥∥ Gr (pr)T

‖Gr (pr) ‖
Gn (pn)

‖Gn (pn) ‖
−1

∥∥∥∥∥
2

,

(6)
where p′ is equivalent to the warped pixel point w

(
ξrr,n,pn

)
.

Eq. 6 is a linear combination of two terms, the Euclidean
distance and inner product of image gradient vectors of a
pair of edge pixel coordinates, and the ratio of contributions
of each terms is adjusted by a scale factor γ. We heuristically
select λ = 0.7 which shows the best matching results among
various evaluations.

The proposed NN searching can be efficiently conducted
by using a data tree structure to quickly narrow down a
searching space. In particular, we employ a balanced k-d tree
structure [24] and modify a correspondence evaluation term
of the k-d tree as the form of Eq. 6 to fit the four-dimensional
edge pixel data composed of a 2-D pixel coordinate and a
2-D image gradient vector.

C. 2-D Edge Divergence Minimization for Motion Estima-
tion

As mentioned in Section. II-B, there exist inevitable
wrong pixel matchings and they have a serious influence
on the overall estimation performance because outlier resid-
uals induced by wrong matchings quadratically affect on
the objective function in Eq. 4. Accordingly, the motion
estimation problem is naturally converted to an iterative
cost minimization problem using IRLS optimization. In this
way, the motion estimation problem can be elegantly for-
mulated as a form of a graident-based optimization, such as
the Levenberg-Marquardt algorithm, and robust re-weighting
methods [25] can be also applied to suppress the effects of
outliers as [9].

In direct optimization-based approaches [20], [21], the
sum of Euclidean distances of edge pixels is combined
with intensity residuals as a geometric constraint not to
let direct methods diverge in low-textured circumstances.
However, if the Euclidean distance is solely used as the
residual within the gradient-based optimization framework,
the positive semi-definite nature of the Euclidean distance
leads the algorithm to a biased update direction, which does
not guarantee convergence toward a correct optimum.

In this paper, we propose a signed residual via a concept of
2-D edge divergence minimization in place of the Euclidean
distances. Imagine a set of disparity vectors induced by sub-
traction of edge pixel correspondences as a vector field acting
along whole streak of black-colored image edge regions as
illustrated in Fig. 4a. With the vector field, we can define a
2-D divergence relationship in the sense of continuous line
integral : ∫

C

F · n ds =

∫∫
V

div F dV (7)

where n denotes a geometric normal vector of the reference
edge region, and C and V represent sets of lines composed
of all reference edge pixels and areas surrounded by edges,
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(a) Misaligned edge regions.
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(b) Flux on reference edges.
Fig. 4: Illustration of 2-D edge divergence. (a) The black rectangle is a
reference edge pixels and gray one is a current edge pixels. Red arrows
mean outgoing vector fields of reference edge lines and blue ones denote
incoming vector fields. (b) The detailed view of the gray dotted region. Flux
along the reference edges can be calculated by inner product of vector fields
F and edge normal vectors n.

respectively. Assuming static scenes and rigid objects, two
edges are exactly registered after the convergence of the
motion estimation. It means that the ideal state of the edge
registration is equivalent to the zero value of div F with
respect to every edge pixels. Then, Eq. 7 becomes∫

C

F · n ds = 0. (8)

Due to the discrete nature of image pixels, the left-hand-
side of Eq. 7 becomes the following summation form :

N∑
i=1

Fi · ni ds = 0 (9)

where Fi ∈ R2×1 is the 2-D vector field and ni ∈ R2×1 is
the geometric normal vector of edge regions, respectively.

Because the infinitesimal length ds cannot be zero, the
inner product of Fi and ni necessarily goes to zero at the
end of the optimization. According to Fig. 4, Fi is denoted
by

Fi = w
(
ξrr,n,p

n
i

)
− near

(
ξrr,n,p

n
i

)
, (10)

and ni can be approximated by normalized image gradient
vectors,

ni ≈
Gr (p′)
‖Gr (p′) ‖

. (11)

where p′ is a nearest reference edge pixel of pni . Although
image gradient vectors do not exactly represent geometric
edge normal vectors n, the approximation works appropri-
ately due to two reasons: image gradient vectors are almost
orthogonal to the streak of edge pixels as depicted in Fig. 5,
and the role of geometric edge normal vectors are no more
than the fixed reference vector to project Fi. Consequently,
we can define the new residual vector r composed of N pairs
of edge pixel correspondences, and the i-th element of r can
be represented as below,

ri = Fi ·
Gr (p′)
‖Gr (p′) ‖

(12)

where p′ is the nearest reference edge pixel point of currently
interesting pni . Note that, entire procedure of making this
residual totally avoids using absolute intensity values while
other edge-based systems, such as [20] and [21], rely on

(a) (b)
Fig. 5: Image gradient directions on edge regions. (a) low-textured scene,
(b) texture-abundant scene.

absolute intensity information to match the edge pixels and
implement the motion estimation.

The main objective is to find the camera motion by
minimizing the 2-D edge divergence :

ξ∗ = arg min
ξ∈SE(3)

rTW r (13)

where W is a diagonal residual weight matrix. Determining
the weight matrix will be discussed in the next section.

Let J = ∂r
∂ξ ∈ RN×6 be a Jacobian matrix of the residual

vector with respect to ξ, then, the motion update ∆ξ is
calculated as

∆ξ = − (H + λdiag (H))
−1
JTW r. (14)

where the matrix H = JTWJ ∈ R6×6 is a weighted Hessian
matrix and λ is a damping coefficient which scales the effect
of diagonal damping term diag (H).

To summarize, the proposed algorithm avoids any use
of absolute intensity information by proposing two key
components: the robust edge matching criterion and 2-D
edge divergence minimization. They allow the proposed VO
algorithm to run in challenging circumstances with both
changing illumination and low-textured scenes.

IV. IMPLEMENTATION DETAILS

We present detailed consideration on how to make the
algorithm more time-efficient and accurate in this section.

A. Sub-sampling of Edge Pixels

For real-time applicability, we examine average time con-
sumption of each part of the proposed method. As can be
seen in the left column of Table. I, the pixel matching step is
the very bottleneck of the algorithm. This issue comes from
thousands of queries to k-d tree to find the nearest neighbors.

To reduce the time consumption by the pixel matching,
we sub-sample the reduced Nsample number of current
edge points. Similar to feature-based methods [6], regularly
distributed samples across the image are crucial for the stable

TABLE I: Average time consumption by each component of the proposed
method without and with sub-sampling on the TUM RGB-D fr3/long.

Components Time(w/o) [ms] Time(w/) [ms]
Edge information extraction 2.97 2.91
Build k-d tree 3.54 3.62
Robust pixel matching 300.95 30.84
Update motions 31.13 3.54
Total 338.59 40.91
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(a) (b)
Fig. 6: Effect of the number of samples on the performance. (a) the
number of samples vs. relative pose errors, (b) the number of samples
vs. averaged time consumption per frame. Each value is obtained by
implementing the proposed VO with fr3/long.

and accurate operation. To equally spread samples, we divide
a whole image into grids and sample at least five pixels per
grid. Then, the remaining number of points are randomly
selected from the entire grids.

We evaluate the effect of different Nsample on perfor-
mance and results are depicted in Fig. 6. It shows clear trade-
off between accuracy and time consumption. However, in-
creasing Nsample does not always guarantee the performance
improvement. According to tendencies of graphs, we can
conclude that Nsample between 400 and 500, corresponding
to 25 Hz frequency, is a reasonable selection to satisfy both
accuracy and real-time applicability.

B. Robust Weight Function for Suppressing Outliers

During the optimization, outlier residuals inevitably occur
due to wrongly matched pixels. Since outliers can mislead
the whole estimation to a wrong update direction, residuals
abnormally larger than the majority have to be suppressed.
Inspired by [9], we employ the t-distribution to suppress
outliers. To fit the distribution, we first check the distribu-
tion of the residual vector. As depicted in Fig. 7, residual
distributions of two datasets are quite different in terms of
a steepness in contrast to [9]. For the best fitting result,
we heuristically found that the best value for the degree of
freedom ν of the t-distribution is two. As can be seen in
Fig. 7, the fitting results of the t-distribution are superior to
the Gaussian distribution. We can update a scale parameter
σ that determines the form of the t-distribution within a few
iterative calculations as described in [9].

V. EXPERIMENTAL RESULTS

We now evaluate the performance of the proposed method
by varying algorithm settings, and extensively compare ours
with state-of-the-art VO algorithms. We use the TUM RGB-
D benchmark dataset [12], which is publicly available and
widely used to compare the performance of RGB-D VO.

A. Datasets and Experimental Settings

Each dataset of the TUM RGB-D benchmark consists of
VGA resolution RGB color and depth images at 30 Hz from
Microsoft Kinect camera, and 100 Hz ground truth data of
motion capture systems. To evaluate robustness to irregular
illumination, we use two types of datasets with and with-
out synthetic illumination changes. To obtain realistically
synthesized images, we employ two illumination models
widely-used in computer graphics, such as ambient and

(a) (b)
Fig. 7: Residual distributions of two datasets with respect to iterations.
(a) low-textured case (fr3/ntxt/str/far), (b) texture-abundant case (fr3/long).
The two distributions in each case are observed at the 3-th and 20-th
iterations, respectively.

diffusive models suggested in [26]. The first one is related to
uniform illumination changes and the other is about locally-
gradual changes induced by an oblique lighting source. The
illumination varies at 2 Hz frequency and we intendedly
add sudden illumination changes at several time instances,
which mimics the camera auto-exposure. The representative
images of the synthesized datasets are depicted in Fig. 11.
All calculations are conducted on a laptop setting with Intel
Core i7-7500U at 2.7 GHz with 8GB memory.

B. Performance 1 : Robust Edge Matching Criterion

To confirm the improvement by the proposed matching
method, we evaluate the matching success rate defined as

success rate =
Ncorrect
Ntotal

(15)

where Ntotal is a total number of pixels and Ncorrect is the
number of correctly matched pixels between original and
warped images, and analyze the overall VO performance.
Because the large motion lowers the matching success rate,
we warp the original image along 6-DoF motions ξ and
evaluate the matching success rates. According to Fig. 8, our
approach shows several times higher success rates than the
normal matching method that checks only spatial vicinities
of pixels in all cases.

Note that the matching success rate of the proposed
method is slightly lower than the normal criterion when the
motion is near zero. It stems from the fact that the image
gradient directions between two images are not exactly same
due to the difference of view points. With these heuristics,
we use the proposed method to lead the update to the correct
direction when the motion gap between two images is large
at first, and after the motion gap becomes sufficiently small,
we use the normal criterion to improve the matching rate
near the zero motion.

To show the benefit of using the proposed matching
method, we run the proposed VO with two matching criteria.
The results in Fig. 9 show that the proposed method main-
tains a steady level of iteration number while the number
of iterations often soars to an intractable level when using
the normal criterion solely. This can be attributed to the
fact that the VO with the proposed matching method has
higher matching rates than the VO with the normal method
that leads to wrong local minima due to a small number of
correct matching pairs in image sequences with large camera
motions.
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Fig. 8: Comparison of edge pixel matching success rates of two pixel-
matching methods along 6-DoF rigid body motions. Black and red colors
denote the normal matching method and the proposed robust matching
method, respectively.

Fig. 9: The improved stability of whole algorithm by the robust edge
matching criterion. The average number of iterations is reduced from 28.8
with 15.1 standard deviation to 18.7 with 5.42 standard deviation.

C. Performance 2 : Frame Distance between Reference and
Current Images

Because drifts incrementally accumulate in every change
of the reference image, the key-frame method fixing the
reference image during several image inputs is actively
employed in many VO systems [5], [6]. In our method,
we also adopt this method to reduce the drift accumulation.
When using it in our VO system, the interval of replacing
the reference image has to be carefully analyzed because
the pixel matching rate directly related to the algorithm
stability sensitively responds to the large spatial gap between
reference and current images, as discussed in Section. V-B.

We investigate the estimation performance and the algo-
rithm stability with various frame gaps by changing the pixel
matching methods. The results in Fig. 10 imply that the
larger gap generally guarantees the lower drifts. Note that,
in the case of the normal matching method, drifts are less
reduced than the proposed matching method because the low
matching rate of the normal method causes the insufficient
motion estimation when frame gaps are large. Additionally,
the number of iterations of the normal method abnormally
surges due to its low matching rate while the proposed
matching method shows more consistent and smaller number
of iterations regardless of incremental frame gaps. Hence,
we can conclude that the proposed matching method gives
a larger basin of convergence and improves the further
performance via the key-frame method.

D. Evaluation of the Overall Estimation Performance

We extensively compare the motion estimation perfor-
mance of the proposed algorithm with open-source state-of-
the-art VO algorithms: two feature-based methods (SVO [5]
and ORB-SLAM [6]) and two direct methods (DVO [8] and
DSO [16]). For fair comparison in terms of pure VO, we
disable the re-localization functionalities of SVO and ORB-

Fig. 10: The top graph shows a relationship between drifts and frame, and
the bottom graph between iterations and frame gaps. Blue and magenta
colors denote the normal method and the proposed matching method,
respectively.

SLAM. We employ the relative pose error (RPE) and its
median value as error metrics suggested in [12]. We mark
the best performance of each sequence using a bold letter in
Table. II and III, and the cross marks mean the failed cases
including a severe divergence.

First, we compare the estimation performance without illu-
mination changes. In texture-abundant scenes, corresponding
to the first three rows of Table. II, the proposed algorithm
shows similar performance with state-of-the-art algorithms.
On the other hand, feature-based methods fail to build the ini-
tial feature map in texture-less scenes while the edge-based
methods including our method can stably operate. Especially,
SVO fail to track the sufficient feature at 948-th image of
fr3/long when the features disappear due to sudden closing
up. Note that DSO and DVO show motion jump problems
at several low-textured images of fr3/str/ntxt/far and
fr3/str/ntxt/near.

In the cases of illumination changes, ORB stably runs
maintaining the similar performance with the consistent illu-
mination cases. Other algorithms except for ours, however,
degrade and fail regardless of whether there are many tex-
tures in scenes or not. Particularly, despite the feature-based
method, SVO fails to initialize even in texture-abundant
scenes because it directly exploits the absolute illumination
information. By contrast, the proposed VO algorithm can
robustly operate in all challenging sequences with the com-
petitive performance.

VI. CONCLUSIONS

In this paper, we proposed the edge-based robust RGB-
D visual odometry using 2-D edge divergence minimization.
Our approach was targeted to be operated in more general
environments, such as low-textured scenes and changing
brightness conditions, by utilizing image edges and their
image gradient vectors. For more robust and stable ICP-based
optimization, we proposed the robust edge matching criterion
with image gradient vectors. Additionally, we suggested the
idea of 2-D edge divergence minimization to enable the
iterative re-weight least squares (IRLS) motion estimation
problem. We evaluated the estimation performance using
TUM RGB-D datasets with varying brightness conditions
and low-textured scenes. Our approach showed the most
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Fig. 11: The representative images used in evaluations. Texture-abundant scenes: (a) fr3/txt/str/far, (b) fr3/txt/str/near, (c) fr3/long, and
low-textured scenes: (d) fr3/ntxt/str/far, (e) fr3/ntxt/str/near, (f) fr3/cabinet. The first and second rows have time difference of 1 second,
corresponding to the half period of changing illumination.

TABLE II: Comparisons of performance using TUM RGB-D datasets without illumination changes.
RMSE of drift (Relative Pose Error) [m/s] Median of drift (Relative Pose Error) [m/s]
SVO ORB DVO DSO Ours SVO ORB DVO DSO Ours

fr3/txt/str/far 0.027 0.020 0.000 0.015 0.016 0.025 0.016 0.000 0.014 0.013
fr2/txt/str/near 0.038 0.018 0.018 0.014 0.015 0.030 0.013 0.015 0.010 0.010

fr3/long 0.020 0.023 0.024 0.017 0.021 0.016 0.017 0.018 0.013 0.011
fr3/ntxt/str/far × × 0.311 0.109 0.012 × × 0.305 0.112 0.009

fr3/ntxt/str/near × × 0.367 0.277 0.033 × × 0.219 0.151 0.016
fr3/cabinet × × 0.145 × 0.068 × × 0.130 × 0.043

TABLE III: Comparisons of performance using TUM RGB-D datasets with illumination changes.
RMSE of drift (Relative Pose Error) [m/s] Median of drift (Relative Pose Error) [m/s]
SVO ORB DVO DSO Ours SVO ORB DVO DSO Ours

fr3/txt/str/far 0.062 0.020 0.105 × 0.019 0.062 0.017 0.088 × 0.014
fr2/txt/str/near 0.059 0.018 0.085 × 0.014 0.049 0.011 0.064 × 0.009

fr3/long 0.041 0.021 0.582 0.031 0.019 0.025 0.016 0.352 0.018 0.010
fr3/ntxt/str/far × × × × 0.012 × × × × 0.010

fr3/ntxt/str/near × × × × 0.037 × × × × 0.019
fr3/cabinet × × × × 0.067 × × × × 0.036

robust performance among state-of-the-art methods in chal-
lenging image sequences in real-time operation at 25 Hz.

To relieve the static environment assumption required by
the 2-D divergence minimization, the future work will deal
with more general scenes including dynamic objects.

ACKNOWLEDGMENT

This work was supported by SAMSUNG Research, Sam-
sung Electronics Co.,Ltd. and the Ministry of Trade, Industry
& Energy(MOTIE, Korea) under the Industrial Technology
Innovation Program(No.10067206).

REFERENCES

[1] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in IEEE
CVPR, 2004.

[2] T. Schops, J. Engel, and D. Cremers, “Semi-dense visual odometry
for ar on a smartphone,” in IEEE ISMAR, 2014.

[3] G. Klein, and D. Murray. “Parallel tracking and mapping for small ar
workspaces,” in IEEE ISMAR, 2007.

[4] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. “DTAM: dense
tracking and mapping in real-time,” in IEEE ICCV, 2011.

[5] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: fast semi-direct
monocular visual odometry,” in IEEE ICRA, 2014.

[6] R. Mur-Artal, and J. D. Tardos, “ORB-SLAM2: an open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE T-RO, vol.
33, no. 5, 2017, pp. 1255-1262.

[7] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruc-
tion in real-time,” IEEE IV, 2011.

[8] F. Steinbrucker, J. Sturm, and D. Cremers, “Real-time visual odometry
from dense RGB-D images,” in IEEE ICCV Workshop, 2011.

[9] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for
RGB-D cameras,” in IEEE ICRA, 2013.

[10] I. Dryanovski, R. G. Valenti, and J. Xiaom, “Fast visual odometry and
mapping from rgb-d data,” in IEEE ICRA, 2013.

[11] D. W. Marquardt, “An algorithm for least-squares estimation of
nonlinear parameters,” Journal of the society for Industrial and Applied
Mathematics, vol. 11, no.2, 1963, pp. 431-441.

[12] J. Sturm, et al. “A benchmark for the evaluation of rgb-d slam
systems,” in IEEE IROS, 2012.

[13] A. S. Huang, et al., “Visual odometry and mapping for autonomous
flight using an rgb-d camera,” in ISRR, 2011, pp. 1-16.

[14] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual odom-
etry on the Mars exploration rovers,” in Journal of Field Robotics, vol.
24, no. 3, 2007, pp. 169-186.

[15] J. Engel, T. Schops, and D. Cremers, “LSD-SLAM: Large-scale direct
monocular SLAM,” in ECCV, 2014.

[16] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE
T-PAMI, 2017.

[17] P. Kim, H. Lim, and H. Jin Kim, “Robust visual odometry to irregular
illumination changes with rgb-d camera,” in IEEE IROS, 2015.

[18] R. Gomez-Ojeda, J. Briales, and J. Gonzalez-Jimenez, “Pl-svo: Semi-
direct monocular visual odometry by combining points and line
segments,” in IEEE IROS, 2016.

[19] J. Witt and U. Weltin, “Robust stereo visual odometry using iterative
closest multiple lines,” in IEEE IROS, 2013.

[20] X. Wang, et al., ”Edge Enhanced Direct Visual Odometry,” in BMVC.
2016.

[21] S. Li and D. Lee, “Fast visual odometry using intensity-assisted
iterative closest point,” in IEEE RAL, vol.1, no.2, 2016, pp. 992-999.

[22] M.Kuse and S. Shen, ”Robust camera motion estimation using direct
edge alignment and sub-gradient method,” in IEEE ICRA, 2016.

[23] Y. Zhou, L. Kneip, and H. Li, “Semi-dense visual odometry for rgb-d
cameras using approximate nearest neighbour fields,” in IEEE ICRA,
2017.

[24] R. A. Brown, “Building a balanced k-d tree in O (knlogn) time,”
Journal of Computer Graphics Techniques, vol. 4, no. 1, 2015, pp.
50-68.

[25] Z. Zhang, “Parameter estimation techniques: a tutorial with application
to conic fitting,” Image and Vision Computing, vol. 15, no. 1, 1997,
pp. 59-76.

[26] R. L. Cook and K. E. Torrance, “A reflectance model for computer
graphics,” ACM Transactions on Graphics (TOG), vol. 1, no. 1, 1982.

6894

Authorized licensed use limited to: Sookmyung Womens University. Downloaded on September 04,2020 at 11:28:22 UTC from IEEE Xplore.  Restrictions apply. 


