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Abstract. Atlanta world holds for the scenes composed of a vertical
dominant direction and several horizontal dominant directions. Vanish-
ing point (VP) is the intersection of the image lines projected from
parallel 3D lines. In Atlanta world, given a set of image lines, we aim
to cluster them by the unknown-but-sought VPs whose number is un-
known. Existing approaches are prone to missing partial inliers, rely on
prior knowledge of the number of VPs, and/or lead to low efficiency. To
overcome these limitations, we propose the novel mine-and-stab (MnS)
algorithm and embed it in the branch-and-bound (BnB) algorithm. Dif-
ferent from BnB that iteratively branches the full parameter intervals,
our MnS directly mines the narrow sub-intervals and then stabs them
by probes. We simultaneously search for the vertical VP by BnB and
horizontal VPs by MnS. The proposed collaboration between BnB and
MnS guarantees global optimality in terms of maximizing the number of
inliers. It can also automatically determine the number of VPs. More-
over, its efficiency is suitable for practical applications. Experiments on
synthetic and real-world datasets showed that our method outperforms
state-of-the-art approaches in terms of accuracy and/or efficiency.

1 Introduction

A set of image lines projected from parallel 3D lines intersect at a common point
called the vanishing point (VP). VP has various applications such as camera
calibration [19, 22], shape estimation [12] and robot navigation [20, 21, 37]. In
structured environments such as man-made scenes, several dominant directions
(DDs) exist. The well-known Manhattan world [9] consists of three mutually
orthogonal DDs. However, this model is not suitable to represent many structures
such as non-orthogonal walls. Atlanta world [30] holds for more general scenes.

? Corresponding author: Pyojin Kim (email: pjinkim1215@gmail.com)
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Fig. 1. (a) Atlanta world. (b) Pipeline of our method. Our outer module searches for
the vertical DD by BnB. Our inner module searches for the horizontal DDs by MnS.

It is composed of a vertical DD and several horizontal DDs (see Fig. 1(a)). The
horizontal DDs are not necessarily orthogonal to each other but orthogonal to
the vertical DD. In Atlanta world, given a set of lines in a calibrated image, we
aim to cluster them by the unknown-but-sought VPs whose number is unknown.

The direction defined by the camera center and a VP is aligned to a DD [15].
Based on this constraint, VP estimation can be reformulated as computing DDs.
Existing VP/DD estimation approaches for Atlanta world are prone to missing
partial inliers [1, 20, 35], rely on prior knowledge of the number of VPs [16, 30],
and/or lead to low efficiency [17]. To overcome these limitations, we propose the
novel mine-and-stab (MnS) algorithm and embed it in the branch-and-bound
(BnB) algorithm. Different from BnB that iteratively branches the full param-
eter intervals, our MnS directly mines the narrow sub-intervals and then stabs
them by probes. As shown in Fig. 1(b), we simultaneously search for the vertical
DD by our BnB-based outer module, and horizontal DDs by our MnS-based
inner module. The proposed collaboration between BnB and MnS guarantees
global optimality in terms of maximizing the number of inliers. It can also auto-
matically determine the number of DDs. Moreover, its efficiency is suitable for
practical applications. In addition, given the vertical DD obtained by inertial
measurement unit (IMU), our inner module can run independently and achieve
real-time efficiency. Our main contributions are summarized as follows.

– Our method guarantees global optimality in terms of maximizing the number
of inliers thanks to the collaboration between BnB and MnS.

– Our method can automatically determine the number of VPs thanks to MnS.
– Our method leads to high efficiency thanks to low-dimensional search space

of BnB and low computational complexity of MnS.
– We established an image dataset with the manually extracted lines as well

as ground truth VPs. It is publicly available on our project website7.
7 https://sites.google.com/view/haoangli/projects/eccv20_vp

https://sites.google.com/view/haoangli/projects/eccv20_vp
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2 Related Work

Existing VP estimation methods applicable to Atlanta world can be classified
into two main categories in terms of whether prior knowledge of the number of
VPs is required [10,16,30,32] or not [1, 17,18,20,29,35].

Methods with prior knowledge. The expectation-maximization algo-
rithm [8] has been applied to VP estimation [30]. This method assigns each line
with a cluster label based on the known number of VPs, and then alternately
updates these labels and VPs. However, it is sensitive to the initial labels and
prone to getting stuck into a local optimum. Classical RANSAC [10] is inherently
suitable for Manhattan world with three VPs [4,5]. However, in Atlanta world, it
requires the known number of VPs to determine the number of the sampled lines
at an iteration [17,38]. An alternative sampling strategy is to fix the number of
samples at an iteration [32]. Accordingly, VPs are sequentially estimated on the
remaining outliers. However, RANSAC may fail to retrieve all the inliers due
to the effect of noise. Joo et al. [16] first proposed an approach that guarantees
global optimality in terms of maximizing the number of inliers. They used the
known number of VPs to define the parameter set and searched for all these
parameters by BnB. While this method provides high accuracy, it efficiency is
unsatisfactory (generally more than 10 seconds per image). In addition, Antunes
et al. [2] proposed a method that can handle the images with radial distortion.
Since prior knowledge of the number of VPs may not be available in practice,
the above methods lead to relatively low generality.

Methods without prior knowledge. The Hough transform-based method
maps the image lines to the great circles, and generates a histogram of the inter-
sections of these circles [29]. The bins with high cardinalities correspond to VPs.
However, this method is sensitive to the histogram resolution. Several methods
based on the variants of RANSAC [26,36] can automatically determine the num-
ber of VPs. For example, Tardif et al. [35] leveraged J-Linkage [36] to generate the
image line descriptors by numerous samplings, and then clustered the lines based
on the descriptor similarity. However, this method is sensitive to noise and also
leads to unsatisfactory efficiency. Li et al. [20] used T-Linkage [26] to estimate
VPs. While this method improves the accuracy of the above J-Linkage-based
approach, it still fails to guarantee global optimality in terms of maximizing the
number of inliers. Antunes and Barreto [1] proposed a message passing-based
method, but it may also get stuck into a local optimum. Moreover, the above
approaches fail to satisfy the orthogonality between the vertical and horizontal
DDs. In contrast, our method satisfies this orthogonality. Pham et al. [28] pro-
posed an energy minimization method. However, it requires sampling and thus
leads to unsatisfactory accuracy. Joo et al. [17] proposed a Bayesian information
criterion-based strategy to determine the number of VPs. They integrated it into
the above globally optimal approach [16] as a pre-processing step. However, it is
time-consuming and may miss some clusters.

Overall, existing approaches fail to achieve high generality, accuracy, and
efficiency simultaneously. Our method overcomes these limitations thanks to the
collaboration between BnB and MnS, as will be shown in the experiments.
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3 Algorithm Overview

DD estimation in Atlanta world is a high-dimensional multi-model fitting prob-
lem subject to constraints. High dimension represents a relatively large number
of parameters to estimate; Multiple models represent a set of DDs whose num-
ber is unknown; Constraints represent that each horizontal DD is orthogonal to
the vertical DD. As introduced above, the original BnB [16] can hardly handle
this problem well since it leads to low efficiency and also requires prior knowl-
edge of the number of DDs. To overcome this limitation, we propose the novel
MnS and embed it in BnB8. Our MnS has three main advantages. First, it
can automatically determine the number of horizontal DDs. Second, it leads to
low computational complexity. Third, it accelerates BnB by reducing the search
space of BnB. As shown in Fig. 1(b), our method satisfies a nested structure. We
simultaneously search for the vertical DD by our BnB-based outer module, and
the horizontal DDs by our MnS-based inner module. If an image line is fitted by
a vertical or horizontal VP/DD, we call it the vertical or horizontal inlier.

Outer Module. As shown in Fig. 1(b-outer), in the camera frame whose
origin is the ball center, we use the unknown-but-sought azimuth α ∈ [−π2 ,

π
2 ]

and elevation β∈ [−π2 ,
π
2 ] to parametrize the vertical DD v by

v(α, β) = [cosα·cosβ, sinα·cosβ, sinβ]>. (1)

Our BnB-based outer module iteratively branches the full intervals of α and β,
obtaining the wide-to-narrow sub-intervals. Given a pair of sub-intervals of α
and β, our outer module computes a perturbed vertical DD based on Eq. (1),
and uses this DD to compute the bounds of the number of vertical inliers. Then
it passes the sub-intervals of α and β to our inner module.

Inner Module. As shown in Fig. 1(b-inner), we compute a unit vector u=
[− sinα, cosα, 0]> orthogonal to the vertical DD v. Then we rotate u around v
by an unknown-but-sought angle θ∈ [−π2 ,

π
2 ] to parametrize a horizontal DD h by

h(α, β, θ)=
[
[a1, b1]t, [a2, b2]t, [a3, b3]t

]>
, (2)

where {ai, bi}3i=1 are expressed by the angles α and β, and t=[cos θ, sin θ]>. All
the horizontal DDs {hn} (n=I, II · · ·N) share the common coefficients {ai, bi}3i=1

but have different rotation angles {θn}. This parametrization satisfies the or-
thogonality between the vertical and horizontal DDs. For each image line, our
MnS-based inner module directly mines a narrow sub-interval from the full in-
terval of θ. This image line is treated as an inlier within this sub-interval. We
call this sub-interval the “candidate interval”. Then our inner module finds a set
of probes, each of which stabs more than τ candidate intervals (τ is a thresh-
old). The number of probes is the number N of horizontal DDs; The positions
of probes correspond to the angles {θn} of horizontal DDs; The number of the
candidate intervals stabbed by these probes is the number of horizontal inliers.

8 The reason why we do not use MnS independently is that MnS is inherently suitable
for low-dimensional problems.
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Fig. 2. (a) The noise-free sphere point p̂k lies on the dominant plane π, while the
observed point pk slightly deviates from π. (b) We expand pk into the spherical cap ωk,
and call ωk the candidate region. (c) The candidate interval [θlk, θ

r
k] corresponds to the

case that the dominant plane π intersects with the candidate region ωk.

Since the input of our inner module is the sub-intervals (instead of exact values)
of α and β, {ai, bi}3i=1 in Eq. (2) are perturbed, and further the candidate inter-
vals are perturbed. Accordingly, our inner module returns the bounds (instead
of exact value) of the number of horizontal inliers to our outer module.

Based on the above bounds of the number of vertical and horizontal inliers,
we obtain the globally optimal DDs that maximize the total number of inliers.
In Section 4, we consider the simplified case that the vertical DD and candidate
intervals are not perturbed. In Section 5, we consider the practical case that the
vertical DD and candidate intervals are perturbed.

4 Simplified Case without Perturbation

In this section, we consider the simplified case that BnB generates the coarse-
to-fine values (instead of wide-to-narrow sub-intervals) of the angles α and β,
which is called the quasi-exhaustive search [3]. Accordingly, the vertical DD v in
Eq. (1) and the coefficients {ai, bi}3i=1 of the horizontal DD h in Eq. (2) are not
perturbed. Given a pair of exact values α̇ and β̇ of the angles α and β (regard-
less of accuracy), we aim to identify inliers. Intuitively, if α̇ and β̇ are close to the
ground-truth values, the known DD v(α̇, β̇) and coefficients {ai(α̇, β̇), bi(α̇, β̇)}3i=1

are accurate, and thus the number of the identified inliers is large.

4.1 Defining Dominant Plane and Candidate Region

As shown in Fig. 2(a), the image line lk is projected from the 3D line Lk
(k = 1, 2, · · · ). The camera center c and Lk define the projection plane. The
unit projection plane normal nk is computed by the endpoints of lk [24]. A
set of image lines {lk} intersect at a horizontal VP s. The direction defined
by s and the camera center c is aligned to an unknown-but-sought horizontal
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DD h(α̇, β̇, θ). We define the horizontal dominant plane π, which is orthogonal
to the DD h(α̇, β̇, θ) and also passes through the camera center c, by

π(α̇, β̇, θ) : h(α̇, β̇, θ) · [x, y, z] = 0. (3)

Similarly, we use the known vertical DD v(α̇, β̇) to define the vertical dominant
plane π′ by

π′(α̇, β̇) : v(α̇, β̇) · [x, y, z] = 0. (4)

As shown in Fig. 2(a), for a set of noise-free inlier image lines {lk} associated
with the same VP s, their corresponding unit projection plane normals {n̂k}
are orthogonal to the same horizontal DD h. Accordingly, the terminal points
of {n̂k}, which are denoted by the sphere points {p̂k}, lie on the same horizontal
dominant plane π (see Fig. 1(b-inner)). Similarly, there are some noise-free inlier
sphere points lying on the vertical dominant plane π′ (see Fig. 1(b-outer)).
In practice, an observed projection plane normal nk is affected by noise, and
thus the sphere point pk does not strictly lie on a dominant plane. We use the
candidate region to model this error in the following.

As shown in Fig. 2(b), we assume that the angle between the noise-free
projection plane normal n̂k and the observed normal nk is smaller than the
threshold ε (ε= 2◦ in our experiments). Accordingly, we expand the observed
sphere point pk into the spherical cap ωk that encloses the noise-free point p̂k.
We call ωk the candidate region. To mathematically express ωk, we define the
3D secant plane µk of the unit sphere. As shown in Figs. 2(b) and 2(c), µk is
orthogonal to the observed projection plane normal nk. The vertical distance
between the secant plane µk and the sphere center c is cos ε. Accordingly, we
express µk by nk · [x, y, z]+cos ε=0. Then we define the edge ek of the candidate
region ωk as the intersection of µk and unit sphere S2 as

ek :

{
µk : nk · [x, y, z] + cos ε=0
S2 : x2+y2+z2 =1

(5)

The edge ek encloses the candidate region ωk.
Based on the candidate region, we re-define the inlier. Specifically, if the can-

didate region ωk intersects with a dominant plane, we treat the sphere point pk
as an inlier. Since the vertical dominant plane π′(α̇, β̇) is known, identifying the
vertical inlier is straightforward. In the following, we introduce how we leverage
the proposed MnS to search for the unknown angle θ of the horizontal dominant
plane π(α̇, β̇, θ) and also identify the horizontal inliers.

4.2 Mining Candidate Interval

For each sphere point, we mine its candidate interval based on the above candi-
date region. As shown in Fig. 2(c), the candidate interval [θlk, θ

r
k]9 of the point pk

corresponds to the case that the horizontal dominant plane π(α̇, β̇, θ) intersects
with the candidate region edge ek. Mathematically, the quadratic system defined

9 For writing simplification, we denote θk by θ hereinafter.
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by Eqs. (3) and (5) has two distinct real solutions that are the coordinates of
two plane-edge intersections. We use basic variable substitutions to eliminate
the variables y and z of this system, obtaining a quadratic polynomial equation
with respect to a single variable x as

λ2(α̇, β̇, θ)·x2+λ1(α̇, β̇, θ)·x+λ0(α̇, β̇, θ) = 0, (6)

where the coefficients {λ2, λ1, λ0} are composed of the known α̇ and β̇ as well as
the unknown cos θ and sin θ. Therefore, we formulate the case that the dominant
plane intersects with the candidate region edge as the case that the quadratic
polynomial in Eq. (6) has two distinct real roots. We compute the discriminant
of this polynomial as ∆(α̇, β̇, θ)=λ1

2−4·λ0 ·λ2. In the following, we aim to find
the candidate interval with respect to θ where ∆(α̇, β̇, θ) > 0.

We first analyze the case that ∆(α̇, β̇, θ) = 0. It corresponds to the case
that the dominant plane is tangential to the candidate region edge. The origi-
nal ∆(α̇, β̇, θ) is a quartic polynomial with respect to cos θ and sin θ. We use the
power reduction [7] to simplify it as

∆(α̇, β̇, θ)=A·cos(2θ)+B ·cos(4θ)+C ·sin(2θ)+D·sin(4θ)+E, (7)

where the known coefficients {A,B,C,D,E} are computed by α̇ and β̇. Then
we substitute cos(4θ)=2 cos2(2θ)−1 and sin(4θ)=2 sin(2θ) cos(2θ) into Eq. (7)
to transform ∆(α̇, β̇, θ) as a polynomial with respect to only cos(2θ) and sin(2θ).

Finally, we use Weierstrass substitution [7], i.e., cos(2θ)= 1−tan2 θ
1+tan2 θ and sin(2θ)=

2 tan θ
1+tan2 θ to simplify ∆(α̇, β̇, θ) as

∆(α̇, β̇, θ)=a·tan4 θ+b·tan3 θ+c·tan2 θ+d·tan θ+e. (8)

∆(α̇, β̇, θ) in Eq. (8) is a quartic polynomial with respect to tan θ, and its known
coefficients {a, b, c, d, e} are computed by α̇ and β̇.

We solve the real root tan θ of the polynomial ∆(α̇, β̇, θ) in Eq. (8) by
SVD [15] and then obtain the zero θ ∈ [−π2 ,

π
2 ]. Note that θ has two solu-

tions {θl, θr} that both correspond to the case of tangency (see Fig. 2(c)). Given
{θl, θr}, we aim to find the candidate interval corresponding to the case that
∆(α̇, β̇, θ) > 0. As shown in Fig. 3(a), we compute the midpoints θm of θl and θr.
If ∆(α̇, β̇, θm)> 0, we treat [θl, θr] as the candidate interval. If ∆(α̇, β̇, θm)< 0,
we treat [−π2 , θ

l]∪ [θr, π2 ] as the candidate interval. Our candidate interval com-
putation leads to O(K) complexity.

4.3 Stabbing Candidate Intervals by Probes

Given K candidate intervals mined above, we aim to find a set of probes, each of
which stabs as many intervals as possible (i.e., maximizes the number of horizon-
tal inliers). Note that we only consider the probe stabbing more than τ intervals
(we compute the adaptive τ following [33]). The reason is that some outliers may
coincidently generate a small number of mutually overlapping intervals, which
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Fig. 3. (a) Given the polynomial roots θl and θr, we find the candidate interval cor-
responding to the positive discriminant. (b) We sequentially scan each probe passing
through an endpoint of candidate interval.

results in a set of pseudo-horizontal inliers. First, we sort all the interval end-
points in ascending order by the merge sort algorithm [6] whose complexity is
O(K logK). Then as shown in Fig. 3(b), we define the probes located at each
endpoint and then sequentially scan these probes. If we scan a probe that passes
through a left/right endpoint, we increase/decrease the number of the stabbed
intervals by 1. Our probe scanning leads to O(K) complexity. In a small region
of θ enclosed by two adjacent endpoints (see the red region in Fig. 3(b)), differ-
ent values of θ correspond to the same number of the stabbed intervals. Without
loss of generality, we treat the probe passing through the left endpoint of this
region (see the red probe in Fig. 3(b)) as the representative.

After scanning, each probe is associated with the number of the stabbed
intervals. We save a probe if its associated number is higher than the numbers
of its two neighbors and also higher than the above threshold τ (see the red
probe in Fig. 3(b) where τ = 3). We treat the positions of N saved probes as
the estimated angles {θn}Nn=I and use them to compute the horizontal DDs by
Eq. (2). We treat each set of sphere points, whose candidate intervals are stabbed
by a saved probe, as a set of horizontal inliers. Therefore, our inner module can
automatically determine the numberN of the horizontal DDs and also maximizes
the cardinality of each horizontal inlier set. The above candidate interval mining,
endpoint sorting and probe scanning lead to the total complexity of O(K logK).
Our inner module can thus run in polynomial time.

5 Practical Case with Perturbation

We extend the above section to the practical case that BnB generates the wide-
to-narrow sub-intervals of the angles α and β. Accordingly, the vertical DD v
in Eq. (1) and the coefficients {ai, bi}3i=1 of the horizontal DD h in Eq. (2) are
perturbed. Given a pair of sub-intervals [α] and [β] of the angles α and β, we
aim to compute the bounds (instead of exact value) of the number of identified
inliers. Note that the exact values α̇ and β̇ in the above section can be treated
as the midpoints of the sub-intervals [α] and [β].
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5.1 Bounds of Number of Inliers

Vertical Inliers. We extend the non-perturbed vertical dominant plane π′(α̇, β̇)
in Eq. (4) to the perturbed vertical dominant plane π′([α], [β]). If π′([α], [β])
intersects with the candidate region of the sphere point pk, we treat pk as a
vertical inlier. Mathematically, we follow Section 4.2 to define a system based
on Eqs. (4) and (5), and further compute the discriminant ∆([α], [β]). Then we
employ the interval analysis [27] to compute the range of ∆([α], [β]) and denote
it by [∆]. If [∆]>0, we treat the sphere point pk as an inlier. We increase both

lower and upper bounds of the number of vertical inliers by 1. If [∆]6 06 [∆],
we cannot make sure whether pk is an inlier. We only increase the upper bound
of the number of vertical inliers by 1. If [∆]<0, we treat pk as an outlier. Our
outer module provides O(K) complexity.

Horizontal Inliers. We follow Sections 4.1 and 4.2 to use the midpoints α̇
and β̇ of the sub-intervals [α] and [β] to generate a polynomial ∆(α̇, β̇, θ) and
compute its zeros θ̇l and θ̇r. In addition, we extend this non-perturbed polyno-
mial to the perturbed polynomial∆([α], [β], θ). Fig. 4(a-left) shows that∆(α̇, β̇, θ)
is within the “buffer”, i.e., perturbation range of ∆([α], [β], θ). Mathematically,
the non-perturbed coefficients of ∆(α̇, β̇, θ) in Eq. (8) are with respect to α̇
and β̇, while the perturbed coefficients of ∆([α], [β], θ) are with respect to [α]
and [β]. We employ the above interval analysis to compute the ranges of these
perturbed coefficients. Accordingly, we extend the non-perturbed zeros θ̇l and θ̇r

of ∆(α̇, β̇, θ) to the perturbed zeros [θl] and [θr] of ∆([α], [β], θ). We leverage the
polynomial perturbation theory [11] to compute [θl] and [θr].

Based on the above perturbed zeros [θl] and [θr], we extend the non-perturbed
candidate intervals in Section 4.2 to the perturbed candidate intervals. As shown
in Fig. 4(a-right), we define the “middle-sized” candidate interval as [θ̇l, θ̇r], and
define the “widest” candidate interval as [[θl], [θr]]. The middle-sized candidate
interval is a subset of the widest candidate interval. Then we follow Section 4.3
to find two sets of probes stabbing these middle-sized and widest candidate
intervals, respectively. As shown in Fig. 4(b), if a set of probes stabs at most w1

middle-sized candidate intervals, we can find another set of probes stabbing at
most w2 (w2>w1) widest candidate intervals. We treat w1 and w2 as the lower
and upper bounds of the number of horizontal inliers, respectively.

5.2 Collaboration between BnB and MnS

As shown in Fig. 1(b), given a pair of sub-intervals [α] and [β], 1) our BnB-based
outer module computes the bounds of the number of vertical inliers, and 2)
our MnS-based inner module computes the bounds of the number of horizontal
inliers and returns them to our outer module. Our outer module adds these
bounds to obtain the bounds of the total number of inliers. We discard a pair of
sub-intervals (see blue bins in Fig. 1(b-outer)) if its associated upper bound is
smaller than the lower bound associated with another pair of sub-intervals. At
convergence, we obtain the optimal pair of narrow sub-intervals [α̂] and [β̂]. For

[α̂] and [β̂], we 1) use their midpoints to compute the optimal vertical DD by
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Fig. 4. (a) Left: the perturbed polynomial ∆([α], [β], θ) leads to the perturbed zeros [θl]
and [θr]. Right: we use these perturbed zeros to define the perturbed (middle-sized and
widest) candidate intervals. (b) We use these candidate intervals to compute the lower
and upper bounds of the number of horizontal inliers.

Eq. (1), and 2) use their midpoints and corresponding N optimal angles {θn}Nn=I

to compute the optimal horizontal DDs by Eq. (2). In addition, to speed up our
search, we leverage Hough transform [29] and the orthogonality enforcement
method [34] to estimate a sub-optimal DD set. We discard a large number of
sub-intervals (see gray bins in Fig. 1(b-outer)) whose upper bounds are smaller
than the number of inliers identified by this sub-optimal DD set.

Given K image lines, our complexity is O(K logK) for a pair of sub-intervals
[α] and [β]. Our method evaluates 22 pairs of sub-intervals at an iteration. It pro-
cesses totally I·22 pairs of sub-intervals where I denotes its number of iterations,
leading to O(I ·22 ·K logK) complexity. In contrast, the state-of-the-art pure
BnB-based approach [17] provides O(K) complexity for a list of sub-intervals.
It processes totally I ′·22+N lists of sub-intervals where I ′ denotes its number of
iterations and N denotes the number of horizontal DDs, leading to O(I ′·22+N·K)
complexity. Experiments show that our method is significantly faster than [17].
The reasons are 1) typically, logK < 2N (our complexity only depends on the
number of lines K but not the number of DDs N), 2) I <I ′ (our branched space
has lower dimension and redundancy), and 3) determining N by [17] is inefficient.

6 Experiments

We compare the state-of-the-art approaches with our methods:

– The Hough transform-based approach [29] (denoted by Hough);
– The T-Linkage-based approach [20] (denoted by T-Linkage);
– The BnB-based approach [17] (denoted by BnB);
– The integration of our outer and inner modules (denoted by OnI);
– Our inner module using the ground truth vertical DD (denoted by Inner).

All these methods are implemented in MATLAB and tested on a computer
equipped with an Intel Core i7 3.2 GHz CPU and 8GB RAM.
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Fig. 5. Representative tests on synthetic data. (a) Evolutions of the highest upper and
lower bounds of our OnI. (b) Time distribution of our OnI at an iteration (processing
four pairs of sub-intervals). (c) Candidate intervals and probes of our Inner.
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Fig. 6. Representative iterations of Fig. 5(a). Given a pair of sub-intervals of the an-
gles α and β, we mine the widest and middle-sized candidate intervals. The numbers
below each image denote the upper and lower bounds of the total number of inliers.

We follow [23,25] to evaluate the accuracy of image line clustering in terms of
precision and recall, and evaluate the VP accuracy in terms of root mean square
of the consistency error. Specifically, precision= C

C+W and recall= C
C+M where C,

W, and M denote the numbers of the correctly identified, wrongly identified, and
missing inliers, respectively. We also compute the F1-score= 2·precision·recall

precision+recall . The
consistency error represents the distance from an endpoint of the image line l to
a virtual line defined by the midpoint of l and an estimated VP.

6.1 Synthetic Dataset

We synthesize several 3D lines aligned to a vertical DD and N (N>3) horizontal
DDs, and project them to the image to generate inlier lines. We perturb the
endpoints of these inlier lines by a zero-mean Gaussian noise. We generate outlier
lines by randomizing their endpoints within the image. In the following, we first
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Fig. 7. Comparisons on synthetic datasets (the number of horizontal VPs is 4). (a)
Accuracy test with respect to the noise level. (b) Accuracy test with respect to the
outlier ratio. (c) Efficiency test with respect to the number of lines.

report some representative tests of our OnI and Inner. Then we compare our
OnI and Inner with state-of-the-art approaches.

Representative tests. We synthesize 100 image lines. The 1-st to 20-th lines
are vertical inliers. The 21-st to 80-th lines are horizontal inliers associated with 3
VPs. The 81-st to 100-th lines are outliers. Fig. 5(a) shows the evolutions of the
highest upper and lower bounds of our OnI. They converge to the number of
inliers 80. We will analyze some representative iterations in the next paragraph.
As shown in Fig. 5(b), our inner module is more time-consuming than our outer
module due to the candidate interval mining. In addition, our probe finding is
efficient thanks to its low computational complexity. As shown in Fig. 5(c), our
Inner identifies all the 60 horizontal inliers and achieves real-time efficiency.

Fig. 6 shows some representative iterations. Given a pair of sub-intervals
of the angles α and β, our OnI mines the widest and middle-sized candidate
intervals. At the 5-th iteration, the sub-intervals are wide since the space of α
and β has not been fully branched. Accordingly, the widest candidate intervals
of a set of horizontal inliers and some outliers overlap with each other, leading
to an over-stabbing probe and loose upper bound. Moreover, the sub-intervals
are not accurate, i.e., they do not contain the ground truth values of α and β.
Accordingly, the middle-sized candidate intervals of a set of horizontal inliers
deviate from each other, leading to an under-stabbing probe and loose lower
bound. At the 15-th iteration, the sub-intervals become narrower. The number
of the over-stabbed candidate intervals decreases and thus the upper bound
decreases. Moreover, the sub-intervals become more accurate. The number of the
under-stabbed candidate intervals decreases and thus the lower bound increases.
At the 33-rd iteration, the highest upper and lower bounds both equal to the
number of inliers 80, which satisfies our stopping criterion.

Accuracy comparisons. Fig. 7(a) shows the tests with respect to the noise
level. We fix the number of lines and outlier ratio to 100 and 20% respectively,
and vary the standard deviation of noise from 0.5 to 3 pixels. Fig. 7(b) shows
the tests with respect to the outlier ratio. We fix the number of lines and noise
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Lines Hough [29] T-Linkage [20] BnB [17] OnI (our) Inner (our)

Our Dataset 91.74%, 92.59% 97.35%, 96.49% 100%, 100% 100%, 100% 100%, 100%

117 lines, 4 VPs 1.61 pix., 0.26 sec. 0.82 pix., 0.37 sec. 0.44 pix., 12.85 sec. 0.45 pix., 3.06 sec. 0.39 pix., 0.04 sec.

NYU [31] 93.42%, 95.95% 96.15%, 98.68% 100%, 100% 100%, 100% 100%, 100%

79 lines, 4 VPs 1.98 pix., 0.17 sec. 1.09 pix., 0.25 sec. 0.59 pix., 9.92 sec. 0.52 pix., 2.15 sec. 0.47 pix., 0.03 sec.

Our Dataset 80.76%, 94.02% 96.15%, 94.93% 100%, 98.78% 100%, 98.78% 100%, 100%

84 lines, 5 VPs 5.63 pix., 0.20 sec. 1.46 pix., 0.28 sec. 0.78 pix., 11.09 sec. 0.75 pix., 2.48 sec. 0.61 pix., 0.03 sec.

NYU [31] 82.43%, 84.72% 97.53%, 95.18% 100%, 98.73% 100%, 98.73% 100%, 97.46%

86 lines, 4 VPs 9.03 pix., 0.22 sec. 1.38 pix., 0.30 sec. 0.60 pix., 13.10 sec. 0.62 pix., 2.73 sec. 0.55 pix., 0.04 sec.

Fig. 8. Representative comparisons on our and NYU [31] datasets. The first two rows:
the manually extracted lines. The last two rows: the lines extracted by LSD [14]. The
numbers below image represent the precision, recall, consistency error and run time.

level to 200 and 1 pixel respectively, and vary the outlier ratio from 10% to 60%.
Each test is composed of 500 independent trials. Hough is sensitive to noise
and outliers. T-Linkage is only robust under low outlier ratios and its accuracy
is prone to being affected by noise since it fails to enforce the orthogonality
constraint. BnB can handle high noise levels and outlier ratios in most cases.
However, its accuracy is affected by some trials without convergence. In contrast,
our OnI and Inner provide high robustness and accuracy. The reason why their
F1-scores are slightly smaller than 100% is that some lines perturbed by great
noise result in the inlier missing and/or cluster ambiguity problems [3].

Efficiency comparisons. Fig. 7(c) shows the test with respect to the num-
ber of lines. We fix the noise level and outlier ratio to 1 pixel and 20% respec-
tively, and vary the number of lines from 75 to 200. As the number of lines
increases, Hough computes a larger number of intersections, and thus its run
time increases. The time variation of T-Linkage is relatively small due to a fixed
number of samplings. The efficiencies of BnB and our OnI decrease due to more
time-consuming bound computation. Our OnI is significantly faster than BnB
since its computational complexity is lower (see Section 5.2), and also it does
not require an inefficient pre-processing step to determine the number of VPs.
Our Inner provides the highest efficiency thanks to our fast probe finding.
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Fig. 9. Comparisons on all the images of our and NYU [31] datasets (using the manually
extracted lines). (a) F1-score of image line clustering. (b) Culminate histogram of the
consistency error. (c) Time distribution of processing a single image.

6.2 Real-world Dataset

We establish an image dataset. It consists of several images satisfying the Atlanta
world assumption. We manually extract the lines and assign them with the
ground truth cluster labels. We also provide the ground truth VPs. In addition,
we select some images satisfying the Atlanta world assumption from the NYU
dataset [31]. We manually extract and label the lines. The ground truth VPs are
provided by [13]. We also use LSD [14] to automatically extract the lines.

Fig. 8 shows some representative comparisons, and Fig. 9 reports the results
on all the images. Hough leads to satisfactory efficiency but the lowest accuracy.
T-Linkage sacrifices partial efficiency to improve its accuracy. BnB provides
high accuracy but low efficiency. Moreover, it fails to converge on a small number
of images, and the best-so-far solution is not accurate enough. In contrast, our
OnI converges robustly and its accuracy and efficiency are higher than BnB.
Note that some lines perturbed by great noise slightly affect the overall accuracy
of BnB and our OnI. Our Inner exploits the ground truth vertical DD to reduce
the effect of noise and search space, achieving the highest accuracy and efficiency.

7 Conclusions

We propose a globally optimal and efficient method for VP estimation in Atlanta
world. Our method efficiently achieves global optimality in terms of maximizing
the number of inliers. Moreover, it can automatically determine the number
of horizontal VPs. Experiments on synthetic and real-world datasets showed
that our method outperforms state-of-the-art approaches in terms of accuracy
and/or efficiency.
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