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Abstract
Sensitivity to light conditions poses a challenge when utilizing visual odometry (VO) for autonomous navigation of small
aerial vehicles in various applications. We present an illumination-robust direct visual odometry for a stable autonomous
flight of an aerial robot under unpredictable light condition. The proposed stereo VO achieves robustness with respect to
the light-changing environment by employing the patch-based affine illumination model to compensate abrupt, irregular
illumination changes during direct motion estimation. We furthermore incorporate a motion prior from feature-based stereo
visual odometry in the optimization, resulting in higher accuracy and more stable motion estimate. Thorough analyses of
convergence rate and linearity index for the feature-based and direct VOmethods support the effectiveness of the usage of the
motion prior knowledge. We extensively evaluate the proposed algorithm on synthetic and real micro aerial vehicle datasets
with ground-truth. Autonomous flight experiments with an aerial robot show that the proposed method successfully estimates
6-DoF pose under significant illumination changes.

Keywords Aerial robotics · Stereo visual odometry · Robustness · Illumination changes

1 Introduction

Autonomous aerial robots that are designed to perform tasks
without direct human remote control rely on accurate state
information. Due to the limitations of GPS or motion capture
system, investigations have been performed to combine mul-
tiple sensors such as laser scanner, sonar, barometer in order
to localize the aerial robots. Alternatively, vision-based state
estimation so-called visual odometry (VO) (Scaramuzza and
Fraundorfer 2011) can offer a less expensive solution with
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up to centimeter-level accuracy without sacrificing too much
payload.

Unlike ground vehicle navigation (Nistér et al. 2004;Mai-
mone et al. 2007), however, small autonomous aerial robots
pose a challenge in applying VO. VOs for the aerial robots
have to compute sufficiently fast and accurate position esti-
mates tomaintain active control at high refresh rate and avoid
failure. They also should be light enough to run on an onboard
computer with limited processing power. Because of these
difficulties, VO algorithms for aerial robots are still actively
researched with RGB-D camera (Huang et al. 2011; Valenti
et al. 2014), stereo camera (Achtelik et al. 2012; Scaramuzza
et al. 2014) and a single camera (Forster et al. 2014; von
Stumberg et al. 2016).

In this work, we focus on the robustness of VO for an
autonomous flight of the aerial robots. Although the accu-
racy and speed have been main objectives of many VO
research (Forster et al. 2017; Mur-Artal et al. 2015), the
robustness to external environmental changes has not been
addressed much. Among the various environmental factors,
light changes in an image, including highlights, shadows
caused by the changes of the camera viewing angle, unpre-
dictable changes of a light source, and the automatic exposure
control, are inevitable phenomena that the aerial robots must
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Fig. 1 Top: hexacopter aerial robot used in our autonomousflight exper-
iments with varying light conditions by turning on and off the lights
repeatedly. Bottom: the estimated (magenta) and true (black) trajec-
tory with the proposed VO method overlap significantly and the point
cloud is consistently recovered despite sudden and severe illumination
changes (Color figure online)

deal with in practice. For example, it is well known that direct
VO methods (Kerl et al. 2013), which perform state estima-
tion using image brightness values, are very vulnerable to
light variations, but the robustification to light changes still
remains a challenge.

To address such issue, we propose a robust direct visual
odometry algorithm that enables reliable autonomous flight
of the aerial robots even in light-changing environments (see
Fig. 1). The proposed stereo VOmethod simultaneously esti-
mates the 6-DoFcamerapose and thephotometric parameters
of the affine illumination change model (Jin et al. 2001) for
individual patches in an image. Furthermore, we utilize a
motion prior from feature-based VO to guide and stabilize
directmotion estimation. Extensive evaluations show that the
proposed algorithm can achieve amore accurate state estima-
tion than other state-of-the-art VOmethods in light-changing
environments while maintaining comparable performance in
normal light conditions. The contributions of the paper can
be summarized as follows.

• We present a novel direct VO algorithm that is robust
under challenging lighting environments by including
local affine parameters for estimating irregular illumi-
nation changes.

• We integrate a motion prior from the feature-based
method into the direct approach for stablemotion estima-
tion, and analyze its usefulness in terms of convergence
property.

• Wedemonstrate a real-time system enabling autonomous
flights of the aerial robot in environments with irregular
illumination changes.

Section 2 reviews related literature on direct motion esti-
mation methods, particularly those involving light changes.
Section 3 introduces some required notations and the prob-
lem. Section 4 provides an overview of the VO pipeline, and
Sect. 5 explains the proposed motion estimation algorithm.
Section 6 analyzes the convergence property of the proposed
method. Section 7 provides evaluation results and demon-
strates how the proposed method makes the aerial robot
fly autonomously under challenging lighting conditions. We
conclude in Sect. 8.

2 Related work

In robotics and computer vision communities, various VO
andvisual simultaneous localization andmapping (V-SLAM)
methods have been researched actively in the last decade.
From the vast literature in the visual navigation field, we
review related work in terms of illumination changes and
implementation on aerial robots.

VO algorithms can be classified into indirect and direct
methods depending on the type of visual information (Engel
et al. 2018). Indirect methods utilize an intermediate rep-
resentation to track the camera pose rather than the direct
measurements. Feature-basedmethods, themostwidely used
indirect methods, show successful 6-DoF camera motion
estimation (Geiger et al. 2011; Mur-Artal et al. 2015; Zhang
et al. 2017). However, they require enough brightness and
textures to extract consistent keypoints from an image (Fang
and Scherer 2014). This requirement is not satisfied in vary-
ing illumination conditions considered in this paper.

Direct VO methods (Kerl et al. 2013; Engel et al. 2014;
Forster et al. 2014) estimate 6-DoF camera motion by min-
imizing the photometric error between image frames, and
they are receiving attention for their improved accuracy and
robustness to little texturewith the help of hardware progress.
They heavily rely on the photo-consistency assumption that a
scene point appears with constant brightness intensity across
multiple images.Kerl et al. (2013) estimates theRGB-Dcam-
era motion accurately with a robust error function which
rejects the noise and outliers in the photometric error. In
Forster et al. (2014), a semi-direct monocular VO is imple-
mented on the onboard computer of a multirotor, showing
precise and fast state estimation results by combining the
advantages of feature-based and direct methods, and it is
extended to multi-camera systems in Forster et al. (2017).
Although these direct VO methods demonstrate impressive
levels of accuracy, they have not been fully tested in challeng-
ing environments where the photo-consistency assumption
does not hold (e.g., abrupt and irregular illumination changes
occur).

Only a few direct VO methods give consideration to illu-
mination changes during the direct motion estimation. It is
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assumed in Klose et al. (2013) that the entire pixels fol-
low the same affine illumination change model (Jin et al.
2001). In order to ignore the illumination changes altogether
between image frames, Kerl et al. (2014) estimates a pure
albedo image of the texture. In Engel et al. (2015), the modi-
fied photometric error based on the affine brightness change
is employed. Alismail et al. (2017) addresses the vulnera-
bility of light changes by using a binary descriptor, which is
invariant tomonotonic changes in intensity. Park et al. (2017)
evaluates various direct image alignment methods for their
accuracy and robustness under challenging lighting condi-
tions. Recently, the direct sparse model (Engel et al. 2018;
Wang et al. 2017) is proposed, and photometric camera cali-
bration is considered explicitly tomitigate photo-consistency
assumption (Bergmann et al. 2018). While these methods
present superior motion estimation even in light-changing
environments, they have not been applied to the autonomous
flight of an aerial robot in an environment with severe light
changes.

The work which is the most similar to the proposed
approach is Krombach et al. (2016) and Forster et al. (2017)),
which are the two-stage VO methods combining feature
based and direct tracking approaches in a sequential man-
ner. Krombach et al. (2016) extends LSD-SLAM to the
stereo camera and employs a feature-based VO to estimate
the motion between keyframes. The feasibility analysis of
using the feature-based VO as a motion prior has not been
addressed in detail while our manuscript provides in-depth
analyses of convergence property of direct and feature-based
functions. In Forster et al. (2017), the photometric error
is minimized at first, and then the estimated camera pose
and the position of the observed 3D points are again opti-
mized to reduce the reprojection residuals. SVO requires
separate mapping thread additionally to minimize the repro-
jection residuals, and theminimization procedure of different
cost functions is different from the proposed method. Both
approaches have not performed sufficient performance eval-
uation with the aerial robot in a challenging environment
where severe lighting changes occur.

Our algorithm builds on our previous work of Kim et al.
(2015), which is the patch-based illumination-robust direct
visual odometry that estimates not only the 6-DoF cam-
era pose but also the parameters of the affine illumination
change model for individual patches. We newly integrate
feature-based VO as a motion prior to the proposed direct
VO method to guide the optimization by seeding it with an
estimate closer to the true solution, resulting in more stable
estimates. Importantly,we analyze and compare convergence
rate and linearity index of each cost function used in feature-
based and direct VO to support the usage of the feature-based
VO as the motion prior. We validate the effectiveness and
accuracy of our VO algorithm by recovering the 6-DoF
cameramotion and the photometric parameters of the author-

collected dataset where irregular illumination changes exist
in the stereo image sequences as well as on manually dis-
turbed sequences of the EuRoC dataset (Burri and Nikolic
2016). Furthermore, we implement the proposed approach
on an aerial robot with a stereo camera, achieving stable
autonomous 3-D flight in light-changing environments.

3 Notation and problem statement

We organize the notations using a stereo camera model, but
the setup can be transferred to the RGB-D camera model
in Kim et al. (2015). The superscripts (l) and (r) denote
the left and right camera respectively and k is used to rep-
resent the frame index. I (l)k

i is the i th image patch in the
left image at time step k. A pixel point is denoted with

x(l)k
i j =

[
x (l)k
i j , y(l)k

i j

]�
, where the subscript i j represents the

pixel index j in the i th image patch. The center point x(l)k
ic

of the i th image patch is the detected keypoint in the feature-

based VO. The 3D points X(l)k
i j =

[
X (l)k
i j ,Y (l)k

i j , Z (l)k
i j

]�

expressed in left camera coordinates {Ck} are mapped to
pixel coordinates x(l)k

i j through the camera projection func-

tion π : R3 �→ R
2:

x(l)k
i j = π

(
X(l)k
i j

)
=

⎡
⎢⎢⎣

f ·X (l)k
i j

Z (l)k
i j

+ px

f ·Y (l)k
i j

Z (l)k
i j

+ py

⎤
⎥⎥⎦ (1)

where f , px , py are the intrinsic calibration parameters of
the rectified images. Conversely, we can compute a 3D point
X(l)k
i j with the depth value Z (l)k

i j and x(l)k
i j through the inverse

I(l)∗

I(r)∗ I(l)k

I(r)k

Tk,∗

{C∗}
Ck

I
(l)∗
i

I
(r)∗
i

P1

I
(l)k
i

I
(r)k
i

x(l)∗
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x(r)∗
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x(l)k
ic

x(r)k
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Fig. 2 Stereo camera model and image coordinate systems
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Fig. 3 Overview of the proposed stereo visual odometry pipeline

projection function π−1 : R2 �→ R
3:

X(l)k
i j = π−1

(
x(l)k
i j , Z (l)k

i j

)
=

⎡
⎢⎢⎢⎣

x (l)k
i j −px

f Z (l)k
i j

y(l)k
i j −py

f Z (l)k
i j

Z (l)k
i j

⎤
⎥⎥⎥⎦ (2)

For the proposed direct method, we compute a local dense
depth map for each keyframe. We model the relative motion
of the left camera framebetween

{
Ck

}
at time step k and {C∗}

at keyframe as rigid body transformation Tk,∗ ∈ SE(3):

X̃(l)k = Tk,∗X̃(l)∗ (3)

where X̃(l)k = [X(l)k�
, 1]� is the homogeneous form of

X(l)k . A minimal representation of Lie group SE(3), i.e.,
Lie algebra se(3) parameter ξ , is used to represent the
incremental displacements during the numerical nonlinear
optimization. We denote the Lie algebra with a 6 × 1 vector

ξ = [
ν�,ω�]�

where ν and ω are infinitesimal translation
and rotation in the tangent space of the matrix group SE(3).
The exponential map between the Lie algebra se(3) and the
rigid body transformation T ∈ SE(3) can be written as fol-
lows:

T (ξ) = exp(ξ̂ ) (4)

where ξ̂ is a 4 × 4 twist matrix from the Lie algebra ξ Ma
et al. (2012). The above-defined notations and equations are
illustrated in Fig. 2.

The problem we want to solve is to estimate the relative
motion of the stereo camera Tk,∗ given a sequence of image
frames and the corresponding depth maps under arbitrary,
abrupt, and partial illumination changes between the time
step k and keyframe.

Keyframe Node 

Local Map Node 

Image Frame Node 

Keyframe Initialization  

Photometric Constraints 

Geometric Constraints 

Fig. 4 Topological representation of the proposed algorithm. We
estimate an initial camera pose of two consecutive images with the geo-
metric constraints (reprojection error). After initializing the local map
at the keyframe, we refine the camera pose and photometric parameters
with the photometric constraints (modified photometric error). When
the distance between the keyframe and current image frame becomes
far enough, we set the current image frame to the keyframe

4 System overview

Figure 3 provides an overview of the proposed stereo VO.
The proposed method has two main steps: 1) feature-based
VO for estimating initial camera pose as a motion prior;
and 2) illumination-robust direct VO for refining the camera
pose and photometric parameters to achieve higher accuracy.
This sequential VO allows stable and accurate 6-DoF camera
tracking in light-changing environments.We obtain the over-
all trajectory by concatenating the frame-to-keyframemotion
estimation illustrated in Fig. 4.

Our feature-based VO method is largely based on Geiger
et al. (2011). We detect the salient feature points and obtain
feature correspondence. With the matched features, we esti-
mate a camera pose that minimizes the sum of the squared
left and right reprojection error using three randomly selected
correspondences in a RANSAC scheme (for full details, refer
to Geiger et al. (2011)). If the feature-based VO prior fails
due to low textured areas or light-changing environments,
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the proposed method performs the next direct VO approach
without motion prior information.

For consideringbothglobal and local illumination changes
in an image, we generate image patches around the matched
feature points used in the feature-based VO. We initialize
the camera pose from the feature-based estimation and the
model parameters of individual patches following the affine
illumination model (Kim et al. 2015). We refine the camera
pose and photometric parameters by minimizing the newly
proposed photometric error, which is based on the modi-
fied photo-consistency assumption explained in Sect. 5.2.1,
for compensation of illumination changes between image
frames.

5 Visual odometry pipeline

5.1 Feature-based estimation

5.1.1 Feature detection andmatching

We detect the feature points by filtering the left and right
images of the two consecutive image frames with the 5 × 5
kernels for finding blobs and corners as shown in the left
of Fig. 5. Bucketing Kitt et al. (2010) is utilized to spread
them uniformly across the entire image domain and reduce
the number of features (for full details, refer to Geiger et al.
2011). We apply non-maximum and non-minimum suppres-
sion to the filtered four images for extracting the feature
candidates.

The distribution of u- and v-directional image gradient
around the feature candidates is employed as a descriptor
for feature matching. To measure the similarity between the
descriptors, we use the sum of absolute differences (SAD).
We solve the feature correspondences by matching features
with the two temporally consecutive stereo pairs and perform
circular matching illustrated in the right of Fig. 5.We find the
bestmatchbetween the current andprevious imageswithin an
11×11 search window.Whenmatching between the left and
right images, we additionally utilize the epipolar constraint.

Fig. 5 Kernels for feature detection (left) and circularmatching strategy
used in solving the feature correspondence (right) (figures courtesy of
Andreas Geiger)

5.1.2 Reprojection error minimization

We compute the relative motion of the stereo camera
Tk,k−1(ξ) by minimizing the sum of squared left and right
reprojection error given the matched feature points. The
reprojection error of the matched features in the left cam-
era can be written as follows:

r (l)
i (ξ) =

∥∥∥x(l)k
ic − w(l)(ξ , x(l)k−1

ic )

∥∥∥ (5)

w(l)(ξ , x(l)k−1
ic ) = π(l)(Tk,k−1(ξ) · π(l)−1(x(l)k−1

ic , Z (l)k−1
i ))

(6)

where ξ ∈ R
6 represents the relative motion of the stereo

camera and w(l)(ξ , x(l)k−1
ic ) is the warping function of the

left camera, which maps a center point of i th patch x(l)k−1
ic in

the previous left image to its pixel coordinate in the current
left image frame given the relative camera motion ξ . The
reprojection error of the features in the right camera can also
be written in the same way with the superscript (r) instead of
(l) in Eqs. (5) and (6). The objective energy function in the
feature-based estimation is the sum of squared left and right
reprojection error as follows:

ξ∗ = argmin
ξ

N∑
i=1

[(
r (l)
i (ξ)

)2 +
(
r (r)
i (ξ)

)2]
(7)

where N is the number of the matched feature points. We
use the relative motion of the camera ξ as a RANSACmodel
to reject outliers in feature matches. Given all inlier features
from theRANSAC,we can obtain the optimal relativemotion
of the camera with the Gauss–Newton method for solving
Eq. (7).

5.2 Direct estimation

5.2.1 Affine illumination changemodel

The traditional photo-consistency assumption commonly
used in direct visual odometry (Kerl et al. 2013; Forster
et al. 2014) denotes that the same 3D points should have the
same intensity values across multiple images. Unfortunately,
this assumption almost never holds in real-world applica-
tions because light variations take place frequently. Thus, we
employ the modified photo-consistency assumption which
can make up for not only the global but also the local illumi-
nation changes between the current and keyframe time steps,
proposed in Kim et al. (2015):

λi I
(l)k
i + δi = I (l)∗

i (8)

where λi and δi denote the photometric parameters for
explaining contrast and brightness change of the i th patch
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in the left image, which will have values close to one and
zero, respectively in the normal environments without obvi-
ous illumination changes. We generate the image patches
around the matched feature points in the feature-based VO,
and select them with the planarity test (Kim et al. 2015),
which determines whether the selected patches are on the
plane in the 3D space or not because 3D points on the same
plane undergo the similar illumination changes. If there are
few feature points in low-texture environments, we utilize
the blob detector like LoG, DoG, SURF to extract some use-
ful plane patches for direct tracking (for full details, refer
to Kim et al. 2015). Patch size is one of the user-defined
custom parameters, and we create the patches with a size of
91×91 pixels.Weutilize atmost 16 patches spread uniformly
across the entire image if there is not enough number of the
planar patches. We can compensate both global and local
illumination changes because each patch can have different
photometric parameters.

5.2.2 Modified photometric error minimization

We simultaneously estimate the camera pose Tk,∗(ξ) and the
photometric parameters per patch (e.g., {λ1, δ1} , . . ., {λm, δm}
where m is the number of patches) by minimizing the sum
of squared modified photometric error. The modified photo-
metric error of the j th pixel in the i th patch can be written
as follows:

ri j (z) = λi I
(l)k
i (w(l)(ξ , x(l)∗

i j )) + δi − I (l)∗
i (x(l)∗

i j ) (9)

z :=
[
ξ�, λ1, δ1, . . ., λm, δm

]� ∈ R
6+2m (10)

where z is the integrated model parameter consisting of the
relativemotion of the camera and the photometric parameters
per patch for the sake of simplicity. To perform the warping
in Eq. (9), we generate the local map of the keyframe consist-
ing of the dense depth map from the dense stereo matching
method called LIBELAS (Geiger et al. 2010), and the bright-
ness information from the left keyframe image. We fix the
dense depth map of the keyframe until the new keyframe
is initialized. The optimal model parameter z∗ which min-
imizes the weighted sum of squared modified photometric
error can be obtained by solving the following non-linear
weighted least square problem:

z∗ = argmin
z

m∑
i=1

n∑
j=1

W (ri j )r
2
i j (z) (11)

Wt(ri j ) = ν + 1

ν +
(
ri j
σt

)2

where n is the number of pixels in each patch and W (ri j )
is the weighting function from the student t-distribution in

order to achieve the robustness against outliers caused by
occlusions, dynamic objects, and sensor noise (Kerl 2012).
Among the various weight functions like Tukey and Huber,
we employ the student t-distribution for its effectiveness in
the direct method (for full details, refer to Kerl 2012). We
initialize the λ and δ of each patch for the newly created
keyframe as one and zero, respectively, and these photo-
metric parameters are continuously updated until the new
keyframe is initialized. Our approach utilizes the previous
frame’s photometric parameters to initialize new optimiza-
tion in the next subsequent frame.We use the Gauss–Newton
algorithm for solving the iteratively re-weighted nonlinear
least square (IRLS) problem in Eq. (11). We compute the
Jacobian matrix with the efficient second-order minimiza-
tion (ESM) method (Benhimane and Malis 2004) because
it outperforms the other methods such as the forward com-
positional (FC) and inverse compositional (IC) approaches
(Klose et al. 2013; Engel et al. 2014).We employ a coarse-to-
fine approach with the image pyramid method for robustness
and faster convergence. Note that there should be enough
valid pixels in each image patch for accurate and stable cor-
rection of light changes.

Our approachmight not workwell when the feature-based
tracking does not give a good initialization for direct track-
ing, or the cost function in Eq. (11) of the direct tracking
is highly nonlinear. Also, the critical part of the proposed
algorithm, the compensation for light changes with the pho-
tometric parameters, is limited when the images are too dark
or too bright. Moreover, there should be enough valid pix-
els in each image patch for accurate and stable correction
of light changes, about 20% of the total number of pixels in
each image patch empirically.

5.3 Discussion

The motion prior from the feature-based VO (Sect. 5.1) for
the proposed direct VO (Sect. 5.2) seems to be unnecessary
and redundant, but we carefully design the proposed stereo
visual odometry to solve two critical issues in the direct VO
under light-changing environments: more stable motion esti-
mation and higher accuracy.

5.3.1 Stable motion estimation

We occasionally observe in the direct VO that a light-
changing environment can lead to “jumps” in the motion
estimate (Kerl et al. 2013; Forster et al. 2017). Due to
the nature of VO, jumps have a significant impact on the
estimated trajectories because VO drift continues to accu-
mulate. We solve this problem by using a motion prior from
the feature-based VO whose computation is less intensive
than the direct method (Forster et al. 2014) and does not
cause noticeable increases in the overall computational time
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Fig. 6 The motion prior from the feature-based visual odometry
(magenta) stabilizes the direct visual odometry significantly. We can
observe a jump in the estimated trajectories with the constant motion
model (red) (Color figure online)

Fig. 7 Our sequential VO shows the best accuracy among other direct
only (Kim et al. 2015) or feature only VO methods (Geiger et al. 2011)

as shown in the evaluation section later, resulting in stable
motion estimation as illustrated in Fig. 6.

5.3.2 High accuracy

It is well-known that a good initial pose can be beneficial
for the direct VO during the nonlinear optimization. The
presence of the motion prior knowledge improves not only
stability, but also accuracy as shown in Fig. 7. Although both
the proposed method and direct only method (Kim et al.
2015) employ the same nonlinear optimization formulation
in Eq. (11), we can obtain the more accurate camera pose
with the proposed algorithm thanks to the motion prior.

6 Energy function analysis

We analyze the linearity of objective energy function and
convergence rate used in feature-based and direct VO. These
analyses theoretically support the usage of the feature-based
VO as the motion prior.

6.1 Energy function convergence

The objective energy function (cost function) of the feature-
based and direct estimation with respect to the camera pose

(a)

(b)

E
(ν

)

E
(ω

)

dE
(ν

)/
dν

dE
(ω

)/
d ω

Fig. 8 The tendency of a the reprojection and photometric error for
transformation with respect to each translational and rotational direc-
tion, and b the first derivatives of the (a)

can be written as follows:

E f (ξ) = 1

N

N∑
i=1

[(
r (l)
i (ξ)

)2 +
(
r (r)
i (ξ)

)2]
(12)

Ed(ξ) = 1

mn

m∑
i=1

n∑
j=1

W (ri j )r
2
i j (ξ) (13)

where the subscripts f and d denote the feature-based and
direct estimation, respectively.

For comparing the convergence rate of each cost func-
tion, we plot the average reprojection and photometric error
in Eqs. (12) and (13) with respect to the 6-DoF camera pose
in the vicinity of the true camera pose in Fig. 8a. The range
of translation and rotation error is in ± 0.3 m and ± 0.2
radian, respectively.Wecompute thembywarping the feature
points and images separately along each degree of freedom
in the 6-DoF camera pose (i.e., the Lie algebra parameter
ξ = [

νx , νy, νz, ωx , ωy, ωz
]�) while the other parameters in

ξ are fixed to the true camera pose. Although the energy func-
tions are highly nonlinear, both error plots have the distinct
minimum values at similar places for each axis in (a).

In Fig. 8b, which shows the derivatives of the two error
plots, a notable difference exists between the feature-based
and direct estimation. When the camera pose is far from
the true camera pose, the slope of error plots of the feature-
based method is very steep compared to the direct method.
Therefore, the farther the currently estimated camera pose is
from the true camera pose, the faster the estimated camera
pose approaches the distinct minimum, especially when the
feature-based method is applied instead of the direct method.
In the vicinity of the valley, however, the slope of the feature-
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(a)

(b)

E
(ν

)

E
(ω

)

Start Point

End Point

Fig. 9 Convergence history of the feature-based, direct, and the pro-
posed VO approaches with the error distance from the true value. We
visualize (b) each 6-DoF camera pose corresponding to the square and
cross marks in (a). The arrows in (a) indicate the direction of the con-
vergence of each method

based estimation error flattens gradually as the camera pose
approaches the true camera pose. The direct method can be
more efficient and accurate than the feature-based method
especially when we start the optimization close to the true
camera pose.

Figure 9 shows the convergence property of the feature-
based, direct, and the proposed VO approaches in the
optimization with respect to the 6-DoF camera pose. The
numbers represent the error distance of eachmoment, and the
subscript f and d denote the feature-based and direct estima-
tionmethod, respectively.Wewrite down the error value only
for the x-axis (red) in the translation (left) and z-axis (blue) in
the rotation (right) for readability. Each square or cross mark
refers to the updated 6-DoF camera motion at each iteration
during the optimization. In the feature-based estimation, the
estimated camera motion rapidly converges to the neighbor-
hood of the true camera pose within only two iterations, and
the optimization stops in six iterations. In contrast, the direct
estimation converges slowly near the true camera pose, and
the total iteration in the optimization is 35, which is about
six times more than the feature-based method. Although the
direct method is slower especially from a distance, the finally
estimated camera motion is a little closer to the true camera
pose than the feature-based method due to the characteristics
of this gradual approach. The final translation error of the
feature-based and direct estimation is 4.6 mm and 3.7 mm,
respectively.

We further analyze the convergence property of the pro-
posed method compared to the two kinds of cost functions
in Fig. 9b. The proposed method first jumps off the start-

ing point (the origin) into the end point (true camera pose)
very closely by performing a feature-basedVOmethod.After
that, with amotion prior from the feature-based VO, our two-
stage method performs the direct estimation to get closer to
the true camera pose. The enlarged figure on the right shows
convergence to a similar 3Dpoint from the direct only and the
proposed method. The total number of iteration in the direct
only method (black) during the optimization is 35 whereas
the proposed two-stage method takes six iterations from the
feature-based and three iterations from the direct method,
showing the effectiveness of the proposed sequential method
design.

6.2 Measurement equation linearity

We validate the better convergence property of the feature-
based method by analyzing the dimensionless linearity index
(Civera et al. 2008), which represents the degree of linear-
ity in the nonlinear measurement equation. The more linear
the measurement equation is for the 6-DoF camera motion,
the faster the nonlinear optimization converges. The dimen-
sionless linearity index (DLI) of each measurement equation
considering the Lie group SE(3) can be written as follows:

L =

∣∣∣∣∣∣∣

∂2h
∂ξ2

∣∣∣
ξ=ξ0

Δξ

∂h
∂ξ

∣∣∣
ξ=ξ0

∣∣∣∣∣∣∣
hx (ξ) =

[
π(T (ξ) · π−1(x, Z(x)))

]
x

h I (ξ) = I (π(T (ξ) · π−1(x, Z(x)))) (14)

where h in Eq. (14) denotes the observation model that hx is
the x component of the warping function in the feature-based
method, and hI is the image intensity observation model in
the direct method. We omit the y component of the warping
function, hy , because its linearity index results are symmet-
ric to the hx . ξ0 is the center point of camera motion used in

the first and second derivative, and Δξ = [
Δν�,Δω�]�

is
the transformation of 6-DoF camera motion from the center
point ξ0. When L ≈ 0, the observation model can be con-
sidered as a linear model in the interval Δξ , and vice versa.
Unlike Civera et al. (2008), we newly derive and calculate
the DLI of each observation model with respect to the 6-DoF
camera motion with the 3D projection model. We provide
the more detailed derivation of the DLI and explanations of
each component in the Appendix.

We plot the DLI of each estimationmethodwith respect to
the translational and rotational transformation from the true
camera pose in Fig. 10. The transformation of the translation

and rotation from the true camera poseΔξ = [
Δν�,Δω�]�

is in the range of ± 0.05 m and ± 0.05 radian, respectively.
The main factors, which cause nonlinearity in Lx (Δν), are
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Fig. 10 Dimensionless linearity index (DLI) of the feature-based and
direct estimation with respect to the a translational and b rotational
motion of the camera

the depth of the feature point and the camera movement
along the forward direction shown in Fig. 10a on the left.
In the results of the feature-based method, the DLI in terms
of x component in translation is exactly zero, which means
that the warping function is linear to the translational move-
ment of the x-axis. Back and forth motion (z component in
translational motion) of the camera is nonlinear, and the DLI
becomes larger as the camera pose is away from the cen-
ter point. The direct method, however, has a high degree
of nonlinearity for translational motion in all directions,
and it is approximately 100 times larger than the feature-
basedmethod. In particular, the image intensity function I (·),
which maps from the pixel coordinates to the image intensity
in Eq. (14), causes such a severe nonlinearity.

Figure 10b shows the similar behavior of the DLI along
the rotationalmotion of the camera. Both estimationmethods
have the nonlinearity for rotational motion in all directions,
and it gets larger as the camera motion drifts farther away
from the true camera pose. However, the direct method has
approximately 100 times more severe nonlinearity than the
feature-based method.

In conclusion, the feature-basedmethod,whichminimizes
the reprojection error in Eq. (7), converges more quickly to
the vicinity of the true camera pose than the direct method
as shown in Fig. 9 thanks to the high degree of linearity.
However, in the proximity of the true camera pose where
the effect of nonlinearity is negligible, the direct method
ultimately can approach the true camera pose a little closer.
These analyses confirm the effectiveness of our decision to
use the feature-based VO as the motion prior, followed by
the proposed illumination-robust direct VO.

7 Experimental results

We extensively evaluate the effectiveness of the proposed
illumination-robust stereo visual odometrywith twodifferent
experiments. We test the accuracy of the proposed algo-
rithm under the light-changing environments with the stereo
image datasets that include irregular illumination changes.
The other VO baselines are applied to these datasets to com-
pare the performance of the motion estimation. Next, we
construct a 3-D autonomous flight system with the proposed
algorithm for online use. We perform flight experiments
with the aerial robot to test the proposed algorithm in terms
of accuracy and robustness to light variations, showing the
short-term autonomous flight capability.

7.1 Experiments on the datasets

We test the proposed algorithm on the synthetic EuRoC
benchmark (Burri and Nikolic 2016) and our own dataset
that contains illumination changes through the stereo image
sequences. We apply artificial illumination changes to RGB
images in the EuRoC benchmark to validate the proposed
algorithm under light-changing environments.We collect the
stereo image datasets including actual light variations for
evaluating the consistency of the proposed algorithm. Since
many VO baselines accept only RGB-D input, we convert
the stereo camera data to match the desired input format.

We compare the proposed VO method against other VO
algorithms: the Dense Visual Odometry (DVO) (Kerl et al.
2013), the Efficient DVO (EDVO) (Klose et al. 2013), and
the depth enhanced monocular odometry (DEMO) (Zhang
et al. 2017). DVO estimates the camera pose by minimiz-
ing the photometric error within the overall images based
on the photo-consistency assumption. DVO is a direct VO
without the affine illumination change model. EDVO is an
advanced direct tracking method which performs per-image
brightness correction by considering a global affine illumi-
nation. Thus, EDVO estimates the photometric parameters
per image whereas the proposed algorithm estimates them
per patch. DEMO is one of the state-of-the-art feature-based
VO algorithms, which estimates the motion of the camera
by utilizing features with and without depth. The proposed
method is implemented inMatlab/C++ and runs on a desktop
computer with Intel Core i5 3.2 GHz and 8GB memory.

7.1.1 Synthetic EuRoC datasets

The EuRoC micro aerial vehicle (MAV) datasets (Burri and
Nikolic 2016) consist of the stereo image pairs at 20 Hz
mounted on an AscTec Firefly MAV and a ground-truth
position from a motion capture system at 100 Hz. To test
the robustness against abrupt and local lighting changes, we
modify the intensity values continuously in the stereo images
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Fig. 11 Extracts from the synthetic EuRoC dataset (top) and author-
collected dataset (bottom). Top: the four distinct quadrants showing
irregular illumination changes. Bottom: the image brightness of the
same place is different because of the automatic exposure control and
the variation of the viewpoint

in the four quadrants based on the affine illumination model
in the Eq. (8), rather than the same affine illumination in the
entire image. Each zone in the four quadrants follows a dif-
ferent affinemodel to simulate uneven lighting changes in the
entire image. We call these stereo image sequences contain-
ing the artificial illumination changes as the synthetic EuRoC
dataset and extracts are shown in the first row of Fig. 11.

To measure the accuracy of the proposed and other VO
algorithms quantitatively, three types of error metrics are
selected: root mean square error (RMSE) of the relative pose
error (RPE), absolute trajectory error (ATE) in Sturm et al.
(2012), and the final drift error divided by the total traveling
distance of a recording platform.

We first evaluate the proposed two-stage design compared
to feature only (Geiger et al. 2011) and direct only (Kim et al.
2015) trackingmethodswhile keeping other parts unchanged
in Table 1. We measure the root mean squared error (RMSE)
of the relative pose error, and present the improved accuracy
of the proposed method. Thanks to a good initial pose from
the feature-based approach, our direct VO can achieve better
performance in terms of RPE value. In particular, the pro-
posed method with motion prior shows more accurate results
than the direct only method by preventing it from jumping
in the motion estimates. The average RMSE of RPE is 0.151
drift m/s for the proposed method, compared with 0.156,
0.351 drift m/s under feature only and direct only method,
respectively.

We present the motion estimation results in Table 2. The
smallest error for each dataset is bolded. The proposed algo-
rithm shows better performance in terms of relative pose error
for the synthetic EuRoC benchmark. The main reason for the
improved results is that the proposed algorithm can copewith
non-uniform light variations by integrating the affine illumi-
nation model per patch into the direct motion estimation.
However, other direct VO algorithms continue to perform
the direct motion estimation under the photo-consistency
assumptionwithout considering such light changes. Excerpts
from the Machine Hall 02, including synthetic image where
irregular illumination changes occur and accurate motion
tracking result, are shown in Fig. 12. Square patches dis-
tributed throughout the image marked red in Fig. 12c help
the proposed algorithm to cope with the irregular illumina-
tion changes present in the synthetic datasets.

In most cases, the DVO, which is a direct VO without the
affine illumination model, greatly loses accuracy due to the
light variations. EDVO, which compensates for the global
illumination changes, shows good motion estimation results
on some datasets: the Vicon Room 2 02 and Machine Hall
03. Since the EDVO performs per-image brightness correc-
tion, it cannot effectively deal with the partial light changes.
On the other hand, the proposed method performs per-patch
illumination correction, and it can handle the irregular illumi-
nation changes, resulting inmore accurate motion estimation
results. If the features are well detected and tracked in the
front-end, the DEMO is not sensitive to the light variations
unlike the previous direct VOmethods. DEMO presents bet-
ter performance than the direct methods in terms of the final
drift error on the Vicon Room 1 03 & 2 03, which have
severe light variations. However, high drift error becomes
more severe over time in most cases.

The strength of the proposed algorithm becomes clear
when analyzing the dataset MachineHall 02 in detail. During
the period from 100 to 300 image index where the irregular
illumination changes occur, we can observe that the proposed
method maintains the modified photometric error very small
whereas the cost values of DVO and EDVO increase notice-
ably, which are reported in Fig. 13a. The main reason for
this difference is that the photo-consistency assumption is

Table 1 Accuracy improvement
of the proposed algorithm

Experiment Proposed Feature only Direct only Length (m)

Vicon Room 1 01 0.050 0.061 0.055 57.97

Vicon Room 1 02 0.050 0.062 0.105 74.28

Vicon Room 1 03 0.609 0.575 1.017 78.70

Machine Hall 01 0.014 0.026 0.018 67.53

Machine Hall 02 0.013 0.026 0.028 63.00

Machine Hall 03 0.266 0.240 0.062 126.87

Machine Hall 04 0.065 0.100 1.172 88.39
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(a) (b) (c) (d)

Fig. 12 a, b Show the original and synthetic images containing artifi-
cial lighting changes from the Machine Hall 02 in the EuRoC dataset.
Red squares in (c) denote the image patches used in the proposed algo-
rithm for compensating irregular illumination changes.dShows the true

(black) and estimated trajectories (magenta) and the reconstructed 3D
point cloud with the proposed method. No fusion is performed (Color
figure online)

(a)

(b)

Fig. 13 aThe photometric error of the three directVOmethods is drawn
on a logarithmic scale where photometric disturbances occur between
the gray dotted lines. The proposed method shows the lowest growth
rate of the photometric error. b The true and estimated photometric
parameters with the proposed method overlap significantly

severely violated in this period. Although a robust weight-
ing function is employed for removing outliers in DVO or
a global affine illumination model is considered in EDVO,
these direct VO methods are not effective enough to take
into account the sudden, partial lighting variations. The pro-
posed algorithm efficiently handles this kind of illumination
changes by using the proposed cost function in Eq. (11),
resulting in accurate motion estimates as shown in Fig. 12d.

Figure 13b shows the true and estimated photometric
parameters of a randomly selected patch. The proposed
method estimates the photometric parameters for contrast
and brightness changes correctly, which are used to compen-
sate for the lighting changes in the synthetic EuRoC datasets
as shown in Fig. 12b. Some jitters denote that our algorithm
compensates for not only the artificial lighting changes we

have made, but also the unmodeled and unpredictable light
changes from sensor noise. Thanks to accurate estimation
of the photometric parameters for each patch, the proposed
method properly compensates the partial light variations dur-
ing the direct motion estimation.

7.1.2 Author-collected datasets

We want to demonstrate that the proposed algorithm also
works well in the everyday indoor environments where the
actual illumination changes occur due to various reasons such
as sunlight entering through windows, automatic exposure
control of the camera, etc. We collect stereo image datasets
with a handheld VI sensor (Nikolic et al. 2014), capturing
a multistoried stairway which includes actual and unknown
illumination changes. Figure 11 shows the example images
where illumination changes are severe. For evaluating the
consistency of the proposed and other VO baselines without
the ground truth, we collect the stereo images along the care-
fully designed movements of the VI sensor in the stairway.

In Fig. 14, the 80 m trajectory going up the stairs from
the 1st to the 6th floor of a building is visualized with three
different views: top, front, and right side. The top view of the
estimated trajectory shows the overlapped, consistent motion
estimation result of the proposed method (magenta) while
other estimated trajectories gradually diverge from the ini-
tially estimated loop. The side and front view of the stairway
also support the high consistency of the proposed method
compared with other VO methods.

7.2 Experiments on an autonomous aerial robot

Webuild an aerial robot systemcapable offlying autonomously
in a light-changing environment with only the onboard
sensors and computer. In order to evaluate the accuracy
of the autonomous flight when integrated with the pro-
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Fig. 14 Comparison of the proposed and other VO methods on the
multistoried stairway from the 1st to 6th floor. The figure shows the
side (left), front (right down), and top (right up) views of the estimated
trajectories in the ascending stairway. The gray dots are reconstructed
3Dpoints used in the feature-basedVOin theproposedmethod, showing
the consistently reconstructed stairway

posed method, we perform trajectory tracking experiments.
Through the flight experiments under actual light changes,
we show the robustness and effectiveness of the proposed
algorithm in the autonomous flight of the aerial robot.
Although some research on the autonomous flight with VO
exists (Forster et al. 2014), there has been no reported result
in light-changing environments.

7.2.1 Experimental setup

We describe the hardware components of the aerial robot
and our experimental setup as shown in Fig. 15. The VI sen-
sor captures the stereo images at 752 × 480 pixel resolution
at 20 Hz, and is mounted in a front, down-looking position
of an AscTec Firefly aerial robot, equipped with an off-the-
shelf inertial measurement unit (IMU). The proposed VO
algorithm updates the current position at 15 Hz. We obtain
the velocity estimates by differentiating the estimated posi-
tion and gyro from IMU. We integrate the nonlinear sliding
mode controller to generate themotor commands used in Lee
et al. (2018). All state estimation and control algorithms run
on the AscTec Mastermind onboard computer with 2.1 GHz
cores and 4 GB memory. For performance comparison only,
a Vicon motion capture system is used to obtain the ground
truth pose of the aerial robot at 100 Hz. Desired position or
trajectory determined by the user or path planning algorithm

True Position
(only for

comparison) 

Vicon Camera Hexacopter Aerial Robot  

Onboard Computer 

Stereo Gray
Images 

Motor Command  3D Orientation 

Goal Position Flight Data 

Ground Computer 

VI Sensor 

Vicon Computer 

Fig. 15 Schematic diagram of the data flow in our experimental setup.
All measured information from the onboard sensors is sent to the
onboard computer to perform state estimation. Control inputs are cal-
culated on the onboard computer with the estimated pose and the goal
position given by the ground computer. All of the flight data and ground
truth pose are sent to the ground computer through WiFi and TCP/IP
communication

Fig. 16 Example images on an autonomousflight experimentwith chal-
lenging illumination caused by the on-off of the lights. The image areas
in the red patches show successful photometric compensation with the
proposedmethodwhile other areas undergo severe illumination changes

is sent to the aerial robot from the ground computer with
Xbee at 40 Hz.

7.2.2 Autonomous flight with light variations

We evaluate the proposed algorithm in terms of accuracy and
robustness through the autonomous flight experiments in an
environment where sudden and partial light variations occur
frequently as shown in Figs. 1 and 16. While the lights are
turned on and off repeatedly and randomly for generating
photometric disturbances, we command the aerial robot to
follow the given trajectory.

The proposed method allows the aerial robot to fly
autonomously along the trajectory even in such a light-
changing environment as demonstrated in Fig. 1. The esti-
mated trajectory is qualitatively similar to the ground-truth
trajectory, and the average translational RMSE of the pro-
posedmethod is 0.06m. The point cloud is also reconstructed
consistently with the trajectory estimates. Figure 16 shows
that per-patch illumination correction in the proposedmethod
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Fig. 17 Comparison of the proposed and other VO methods under
severe illumination changes. The figure shows the top (left) and 3-D
(right) views of the estimated trajectories

Feature Detection Feature Matching Feature Error Minimization Direct Error Minimization

Fig. 18 Runtime evaluation of the proposed algorithm on the aerial
robot during the autonomous flight experiments

works successfully during the autonomous flight experi-
ments. If the patch size is too small, we cannot estimate the
photometric parameters of each patch stably and correctly.
Conversely, if the patch size is too big, it will not be able to
respond to local (irregular) lighting changes effectively. The
patch size (91 × 91) we have currently used is the result of
our experimental evaluations. The autonomous flight exper-
iments validate the accuracy and robustness of the proposed
algorithm, which can estimate the accurate 6-DoF pose of
the aerial robot using only onboard sensors and computer.

We also compare the proposed method to other VO meth-
ods with the stereo images obtained during the autonomous
flight experiments under the irregular illumination changes
as shown in Fig. 17. The average translational RMSE of
the proposed algorithm is 0.06 m, while DVO, EDVO, and
DEMO are 0.93, 0.16, and 0.32, respectively. Existing VO
approaches (DVO, EDVO, DEMO) cannot cope with the
sudden and local lighting changes in the images, showing a
significant positional error compared to the ground-truth tra-
jectory. Although EDVO, which compensates for the global
illumination changes, shows good motion estimation results
among other VO approaches, it cannot effectively deal with
the local lighting changes. The proposed method can handle
not only the global but also the local illumination changes
with different affinemodels for different patches, showing the
benefits of our proposals in challenging light environments.

Figure 18 shows a break-up of the time required to com-
pute the 6-DoF camera motion on the aerial robot. The
computation time for the feature-based estimation and direct
estimation is about 27.3 ms and 40.4 ms, respectively. Our
direct VO approach can achieve stable and robust motion
estimation performance without noticeable increases in the
overall computational time. The proposed algorithm updates

the current position of the aerial robot at 15 Hz, resulting in
the stable autonomous flights under light-changing environ-
ments.

Figure 19 shows x and y position, the estimated photo-
metric parameter (contrast), sample images, and photometric
error of the proposed method under a light-changing envi-
ronment for about one minute flight. The estimated contrast
parameters in the third row closely match the actual lighting
conditions observed in the fourth row. When the lights are
turned on and off, the photometric parameters of the affine
illuminationmodel are changed to compensate for the sudden
and irregular illumination changes. Due to such compensa-
tion of the lighting changes, the photometric error in the fifth
row does not exceed 60, resulting in accurate motion estima-
tion results in the first and second rows. Please refer to the
video clips submitted with this paper showing more details
about the experiments.1

8 Conclusion

We present an illumination-robust direct visual odometry for
the autonomous flight of the aerial robot in a light-changing
environment. The gain in robustness to irregular illumina-
tion changes is due to the fact that the affine illumination
model is employed in each image patch and integrated into
the direct motion estimation to simultaneously estimate the
6-DoF camera motion and the parameters of partial light
changes.We further propose to utilize amotion prior from the
feature-based visual odometry for stable and accuratemotion
estimation in a light-changing environment. Detailed analy-
ses with the convergence rate and the degree of linearity of
each cost function in feature-based and direct methods sup-
port such usage of themotion prior knowledge. The proposed
VO algorithm enables the aerial robot to fly autonomously
and robustly under changing lighting conditions at the cost
of estimating the illumination change model parameters.

The results of this paper have many extensions and appli-
cations. Our work only focuses on the autonomous flight
of the aerial robots, but the proposed illumination-robust
visual odometry can be equally applied to various types of
autonomous vehicles such as self-driving cars. Another inter-
esting extension would be to use the proposed VO method
to enhance other SLAM algorithms under changing lighting
conditions. For example, our initial position estimates could
be used as the cornerstone of a full SLAM system under
irregular illumination changes. Our approach assumes that
light changeswill follow the affine illuminationmodel; future
work should consider various light change modes that vary
more complexly such as bright spots and shadows caused by
sunlight coming through the windows.

1 Video available at https://youtu.be/agOxpphFDfE.
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Fig. 19 Flight experiment results in a light-changing environment
where lights are turned on and off repeatedly. The dotted vertical lines
denote the time instants at which each snapshot is captured. We plot
the changes of the estimated contrast in the third row, and all jumps
correspond to light changes by switching the lights on and off during
the sequence. When the lights dimmed near 5 s, the contrast increases
and the illumination changes are compensated, and vice versa when the

lights brightened. The estimated photometric parameters of the affine
illumination model in the third row show similar behavior to the bright-
ness level of the actual images in the fourth row. Although sudden and
severe light changes continue to occur, the photometric error in the fifth
row does not exceed 60, resulting in accurate motion tracking in the
first and second rows
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Appendix

In this section, we derive the analytic form of the dimen-
sionless linearity index (DLI) for each observation model in
feature-based and direct estimation in detail. TheDLI of each
measurement equation in terms of the 6-DoF camera motion
can be written as follows:

L =

∣∣∣∣∣∣∣

∂2h
∂ξ2

∣∣∣
ξ=ξ0

Δξ

∂h
∂ξ

∣∣∣
ξ=ξ0

∣∣∣∣∣∣∣
(14)

x̂ = hx (ξ) =
[
π(T (ξ) · π−1(x, Z(x)))

]
x

Î = hI (ξ) = I (π(T (ξ) · π−1(x, Z(x))))

where the h is the observation model in each estimation
method. The division in the Eq. (14) denotes element-wise

operation between twovectorswith a slight abuse of notation.
For the sake of simplicity, we can rewrite the x component
of the warping function in the feature-based method as x̂ ,
and the pixel intensity of the next image frame in the direct
method as Î .

T = T (ξ) = exp(ξ̂ ) = exp

(
6∑

i=1

ξ i Ei

)
(4)

The 6-DoF camera motion, T (ξ) ∈ SE(3), is written as T in
this section for simplicity. In theEq. (4), ξ i is a i th component
of the Lie algebra explained in Sect. 3, and Ei is one of the
six Lie algebra se(3) bases, each corresponding to either
infinitesimal translations or rotations along each axis Blanco
(2010).

Feature-based estimation

Thefirst and second-order partial derivatives of x̂ with respect
to ξ , i.e., the Jacobian and Hessian matrices, can be written
as follows:

Jx = ∂ x̂

∂ξ
∈ R

1×6, Hx = ∂2 x̂

∂ξ2
∈ R

6×6 (15)
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By applying the chain rule, we can derive analytical Jacobian
matrix as follows:

Jx = ∂ x̂

∂X′ · ∂X′

∂T
· ∂T

∂ξ
(16)

where X′ = [
X ′,Y ′, Z ′]� is a transformed 3D point from

X = [X ,Y , Z ]� with respect to T . The analytical Jacobian
matrix of warping function is:

Jx =
[
fx

1
Z ′ 0 − fx

X ′
Z ′2 − fx

X ′Y ′
Z ′2 fx

(
1 + X ′2

Z ′2
)

− fx
Y ′
Z ′

]

For full details of each step, see Blanco (2010) and Kerl
(2012).

In the following, the second order partial derivatives of
warping function with respect to ξ , the Hessian matrix, can
be obtained by applying the chain rule same as above:

Hx = ∂

∂ξ

(
∂ x̂

∂ξ

)
= ∂

∂ξ

(
∂ x̂

∂T
· ∂T

∂ξ

)

= ∂

∂ξ

(
∂ x̂

∂T

)
· ∂T

∂ξ
+ ∂ x̂

∂T
· ∂2T

∂ξ2

(17)

The (i, j)th element of the Hessian matrix Hx can be written
as follows:

Hx(i, j) = ∂

∂T

(
∂ x̂

∂T

)
· ∂T

∂ξ j
· ∂T

∂ξ i
+ ∂ x̂

∂T
· ∂2T

∂ξ i∂ξ j

=
(

∂T

∂ξ j

)�
· ∂2 x̂

∂T 2 ·
(

∂T

∂ξ i

)
+ ∂ x̂

∂T
· ∂2T

∂ξ i∂ξ j

(18)

where the first and second-order derivatives of T with respect
to ξ i can be computed as follows:

∂T

∂ξ i
= Ei · T

∂2T

∂ξ i∂ξ j
= 1

2

(
Ei E j + E j Ei

) · T

Note that, Jy and Hy , the Jacobian and Hessian matrices
of y component of the warping function with respect to the
camera motion, are omitted because they are symmetric to
Jx and Hx . With the equations derived above, we obtain the
Jacobian and Hessian matrices of x̂ with respect to the ξ , and
compute the DLI of the observation model in the feature-
based method in terms of the 6-DoF camera pose.

Direct estimation

Thefirst and second-order partial derivatives of Î with respect
to ξ , the Jacobian and Hessian matrices of the observation

model in the direct method, can be written as follows:

JI = ∂ Î

∂ξ
∈ R

1×6, HI = ∂2 Î

∂ξ2
∈ R

6×6 (19)

To obtain the analytical Jacobian and Hessian matrices, we
repeat similar calculation procedure again as above. Based
on the analytical Jacobian and Hessian matrices of warping
function calculated in the previous section and the chain rule,
we can easily derive the analytical Jacobian matrix of direct
method as follows:

JI = ∂ Î

∂ x̂
· ∂ x̂
∂ξ

= ∂ Î

∂ x̂
· ∂ x̂
∂X′ · ∂X′

∂T
· ∂T

∂ξ
(20)

where x̂ = [
x̂, ŷ

]� is a 2D pixel point in the image Î . The

first term ∂ Î
∂ x̂ denotes the gradient of the image Î given by the

image derivatives in the horizontal and vertical directions and
the latter terms are the Jacobian matrix of warping function
written in Eq. (16). The analytical Jacobian matrix of the
observation model in the direct method is:

JI =
[

∂ Î
∂ x̂

∂ Î
∂ ŷ

]
·
[

∂ x̂
∂X′ · ∂X′

∂T · ∂T
∂ξ

∂ ŷ
∂X′ · ∂X′

∂T · ∂T
∂ξ

]

=
[

∂ Î
∂ x̂

∂ Î
∂ ŷ

]
·
[

∂ x̂
∂ξ
∂ ŷ
∂ξ

]

=
[
∇ Îx ∇ Îy

]
·
[
Jx
Jy

]

where ∇ Îx and ∇ Îy are image gradients of Î along the x and
y direction in the image plane.

The Hessian matrix used in the direct estimation can be
also derived by applying the chain rule and the Eq. (20) as
follows:

HI = ∂

∂ξ

(
∂ Î

∂ξ

)
= ∂

∂ξ

(
∂ Î

∂ x̂
· ∂ x̂
∂ξ

)
(21)
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Each element of the Hessian matrix, an element in the i th
row and j th column of HI , can be written as follows:

HI (i, j) = ∂

∂ξ j

(
∂ Î

∂ξ i

)

= ∂

∂ξ j

(
∂ Î

∂ x̂
· ∂ x̂

∂ξ i
+ ∂ Î

∂ ŷ
· ∂ ŷ

∂ξ i

)

= ∂

∂ξ j

(
∂ Î

∂ x̂

)
· ∂ x̂

∂ξ i
+ ∂ Î

∂ x̂
· ∂

∂ξ j

(
∂ x̂

∂ξ i

)

+ ∂

∂ξ j

(
∂ Î

∂ ŷ

)
· ∂ ŷ

∂ξ i
+ ∂ Î

∂ ŷ
· ∂

∂ξ j

(
∂ ŷ

∂ξ i

)

=
(

∂2 Î

∂ x̂2
· Jx(1, j) + ∂2 Î

∂ ŷ∂ x̂
· Jy(1, j)

)
· Jx(1,i)

+ ∂ Î

∂ x̂
· Hx(i, j)

+
(

∂2 Î

∂ x̂∂ ŷ
· Jx(1, j) + ∂2 Î

∂ ŷ2
· Jy(1, j)

)
· Jy(1,i)

+ ∂ Î

∂ ŷ
· Hy(i, j)

(22)

where Jx , Jy and Hx , Hy are the Jacobian andHessianmatri-
ces of warping function derived in the previous section, and
∂2 Î
∂ x̂2

, ∂2 Î
∂ x̂∂ ŷ ,

∂2 Î
∂ ŷ2

are the second image derivatives in the hor-
izontal and vertical directions. With the above analytical
Jacobian and Hessian matrices of the observation model in
the direct method, we can compute the DLI of the image
intensity observation model with respect to the 6-DoF cam-
era motion.
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