

Motivation

Visual SLAM is a high-dimensional non-convex & nonlinear optimization problem.

SLAM can be simplified as a linear least-squares problem if the camera orientations are known.

Contributions

- Orthogonal Plane Detection in Structured Environments
- A New, Linear Kalman Filter (KF) SLAM Formulation
- Evaluation and Application to Augmented Reality (AR)

Linear RGB-D SLAM for Planar Environments Pyojin Kim¹, Brian Coltin², H. Jin Kim¹

¹Seoul National University ²NASA Ames Research Center

Orthogonal Plane Detection

Modeling Planes with RANSAC

X, Y, Z: 3D coordinates of points u, v: normalized image coordinates w : measured disparity map

Refitting Planes to Manhattan World

 $s^* = \arg\min\left\|s\left(r_xu + r_yv + r_z\right) - w\right\|$

s : scale factor (reciprocal of the offset) r_x, r_y, r_z : unit vector of the nearest Manhattan axis

Linear SLAM KF Formulation

State Vector $\mathbf{X}_{k} = \begin{bmatrix} \mathbf{p}_{1}^{\top} & \mathbf{m}_{1,k} & \cdots & \mathbf{m}_{n,k} \end{bmatrix}^{\top} \in \mathbb{R}^{3+n}$

$k - \lfloor \mathbf{P}_k \rfloor$	111 1,k	•••	$\texttt{III}n,k \rfloor \subset \texttt{IN}$	
where	$\mathbf{p}_k = \begin{bmatrix} x_k \end{bmatrix}$	y_k	$z_k\big]^\top \in \mathbb{R}^3$	

 $\mathbf{m}_{i,k} = \begin{bmatrix} o_{i,k} & (alignment) \end{bmatrix} \in \mathbb{R}^1$ 3-DoF rotational motion is compensated by LPVO.

Measurement Model

$$\mathbf{y}_{k} = \begin{bmatrix} \mathbf{m}_{1,k} - x_{k} \\ \mathbf{m}_{2,k} - y_{k} \\ \mathbf{m}_{3,k} - z_{k} \\ \vdots \end{bmatrix} = \mathbf{H}_{k} \mathbf{X}_{k} + \mathbf{v}_{k} \quad \text{where} \quad \mathbf{H}_{k}$$

Observation is an offset from the orthogonal plane.

Computational Complexity Analysis

Table. Advantages of L-SLAM over Existing EKF-SLAM Methods

	L-SLAM (Ours)	[9]	[8]	[24]	[22]
State Size	3+nLinear	7 + 7n	7 + 9n	15 + 3n	12 + 10n
Linearity		Nonlinear	Nonlinear	Nonlinear	Nonlinear

$n_x u + n_y v + n_z = w \qquad (u = \frac{X}{Z}, v = \frac{Y}{Z}, w = \frac{1}{Z})$

Process Model

- $\mathbf{X}_k = \mathbf{F}\mathbf{X}_{k-1} + \bigtriangleup \mathbf{p}_{k,k-1} + \mathbf{w}_{k-1}$
- where $\mathbf{F} = \mathbf{I}, \mathbf{w}_{k-1} \sim N(0, \mathbf{Q}_{k-1})$

- 1	0	0	1	0	0]
0	-1	0	0	1	0	•••
 0	0	-1	0	0	1	•••
•	• •	• •	• •	• •	• •	•.
	• •	•	•	•	•	•

- $\mathbf{v}_k \sim N\left(0, \mathbf{R}_k\right)$

Evaluations

Video Clips

ICL-NUIM Dataset

Sequence	lr-kt0n	lr-kt1n	lr-kt2n	lr-kt3n	of-kt0n	of-kt1n	of-kt2n	of-kt3n
ORB-SLAM2	0.010	0.185	0.028	0.014	0.049	0.079	0.025	0.065
DVO-SLAM	0.108	0.059	0.375	0.433	0.244	0.178	0.099	0.079
CPA-SLAM	0.007	0.006	0.089	0.009	—	_	—	_
KDP-SLAM	0.009	0.019	0.029	0.153	—	—	—	—
LPVO	0.015	0.039	0.034	0.102	0.061	0.052	0.039	0.030
L-SLAM (Ours)	0.012	0.027	0.053	0.143	0.020	0.015	0.026	0.011

Author-collected RGB-D Dataset

They show a consistent view of the 3D models.

Table. Comparison of the Absolute Trajectory Error (unit: m)

L-SLAM is comparable to recent SLAM approaches.