
Robust Visual Odometry to
Irregular Illumination Changes with RGB-D camera

Pyojin Kim, Hyon Lim, and H. Jin Kim

Abstract— Sensitivity to illumination conditions poses a chal-
lenge when utilizing visual odometry (VO) in various ap-
plications. To make VO robust with respect to illumination
conditions, they need to be considered explicitly. In this paper,
we propose a direct visual odometry method which can handle
illumination changes by considering an affine illumination
model to compensate abrupt, local light variations during direct
motion estimation process. The core of our proposed method
is to estimate the relative camera pose and the parameters of
the illumination changes by minimizing the sum of squared
photometric error with efficient second-order minimization.
We evaluate the performance of the proposed algorithm on
synthetic and real RGB-D datasets with ground-truth. Our
result implies that the proposed method successfully estimates
6-DoF pose under significant illumination changes whereas
existing direct visual odometry methods either fail or lose
accuracy.

I. INTRODUCTION

Estimating egomotion of a robot with video sequences
coming from the camera attached to it is called visual odom-
etry (VO) [1]. Existing VO techniques can be broadly divided
into two types, depending on pose estimation method: feature
based methods [2] and direct methods [3]. Many studies
have adopted feature-based methods with monocular [4],
[5], stereo [2], [6], and RGB-D camera [7], [8]. However,
direct methods are getting more interests recently [3], [9],
[10]. In these direct methods, the core idea is to mini-
mize the sum of squared photometric error between two
images under the photo-consistency assumption [11]. The
fundamental assumption of existing direct VO methods is
that brightness constraint is valid only under sufficient and
constant illumination in the environment [12], which is an
impractical assumption in most real-world applications as
illustrated in Fig. 1. Thus, it is difficult to directly apply the
existing direct VO methods when the illumination change is
not negligible.

To make robust VO algorithm with respect to illumination
changes, we propose a direct VO method which works
well under sudden or local illumination changes during the
direct motion estimation process by considering individual
illumination changes in selected patches in an image. An
affine illumination change model [14] is applied to individual
patches which are selected based on planarity test with
RANSAC using depth map of patches. To the best of our
knowledge, this is the first direct VO which takes into ac-
count irregular, local illumination changes in the patches that
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Fig. 1. Illustrative examples of irregular illumination changes. (a)
An automatic exposure control of camera makes the intensity of images
change when the camera moves in the TUM dataset ‘fr3/struc&notex’. (b)
Comparison of the estimation results of DVO [3], EDVO [13], and the
algorithm proposed in this paper (namely PIVO) with (a). A large drift error
takes place under DVO when the illumination changes occur. Our method
shows best performance among other direct VO methods under illumination
change, i.e. blue and black curves almost overlap.

are selected based on the planarity condition with RANSAC
to make patches have the same normal vector to satisfy the
affine illumination model [14].

The proposed method is evaluated with synthetic RGB-
D dataset by modifying the TUM RGB-D benchmark
dataset [15] and carefully chosen sequences that have il-
lumination changes in [15]. We evaluate the performance
of the proposed algorithm compared to the other direct VO
methods [3], [13].

II. RELATED WORK

For autonomous navigation of a robotic system, VO has
been actively utilized both on the ground [2], [16] and in the
air [7]. As discussed in Section I, the VO methods can be
categorized as two in terms of a kind of information used in
pose estimation process: so called feature-based methods [2]
and direct methods [3].

The feature-based methods encode an image to a list
of keypoints (i.e. a list of image coordinates of distinctive
points) and solve the geometric pose estimation problem on
that list of coordinates and association table. Many keypoint
extraction and matching algorithms are applied to those
feature-based VO, however, they require enough brightness
and textures to extract consistent keypoints from an image.
In varying illumination conditions that we consider in this
paper, this requirement degrades the performance of feature-
based VO. As a result, the feature-based methods cannot
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correctly estimate their own position in featureless or dark
environments.

Therefore, direct methods which exploit the entire image
information are receiving attention recently with the help of
hardware progress. In [17] and [18], the camera pose tracking
is performed based on alignment of 3D point clouds (ICP),
which presents successful results in terms of robustness,
computation time, and accuracy. The direct VO techniques
([3], [19], [20]) are proposed, which minimize the photo-
metric error between image frames. They are fundamentally
based on the photo-consistency assumption, which means
that a point in the 3D world represents the same brightness
intensity at different camera poses [12]. In [19], a semi-direct
method was successfully implemented on an aerial vehicle
with a single downward-looking camera. [3] estimates the
relative RGB-D camera motion accurately with a robust error
function which rejects the noise and outliers in the image.
In [20], quadrifocal geometry constraints are used to track
the trajectory of a stereo camera. Even though the outlier
rejection algorithms exist in the above methods such as a
robust error function, a large drift of the estimated trajectory
caused by the abrupt illumination changes is inevitable since
the photo-consistency assumption is no longer valid.

Only a few direct VO methods give consideration to
illumination changes during the direct motion estimation. It
is assumed in [13] that the entire pixels in the image follow
the same illumination change model [14]. A similar light
variation model is also used in [21] and [22], which need the
reconstructed 3D scene model for camera pose tracking and
use a single global brightness (bias shift) parameter in the
image. In order to ignore the illumination changes altogether
between image frames, [23] estimate a pure albedo image of
the texture. In contrast with the works mentioned above, the
proposed direct VO method in this paper takes into account
both global and local illumination changes. In particular,
general illumination changes can be handled because each
patch is allowed to have different model parameters of
illumination changes.

III. NOTATION AND PROBLEM STATEMENT

The superscript k is used to denote the index of an image
frame. An intensity image obtained at time step k is denoted
with Ik. In the intensity image Ik, i-th image patch is
denoted with Iki . For an arbitrary 2D pixel point, pixel
coordinates in Iki are denoted as xk

ij =
[
xkij , y

k
ij

]>
, where

the first subscript i is the patch index, and j is the pixel
index. 3D points Xk

ij =
[
Xk

ij , Y
k
ij , Z

k
ij

]>
defined in camera

coordinate {Ck} are mapped to the pixel coordinates xk
ij

through the camera projection function π : R3 7→ R2

xk
ij = π

(
Xk

ij

)
=

Xk
ij ·f
Zk

ij

+ px
Y k
ij ·f
Zk

ij

+ py

 (1)

The above projection function is determined uniquely with
the camera intrinsic parameters f, px, py [24].

Conversely, a 3D point Xk
ij can be computed with the

depth value Zk
ij (from depth map of RGB-D sensor) and xk

ij
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Fig. 2. The notations and setting of the proposed visual odometry
algorithm. Our goal is to estimate Tk,∗ given the patch-based keyframe
gray image (I∗), and depth image (D∗), and the current gray image (Ik).

through the inverse projection function π−1 : R2 7→ R3

Xk
ij = π−1

(
xk
ij , Z

k
ij

)
=


xk
ij−px

f Zk
ij

yk
ij−py

f Zk
ij

Zk
ij

 (2)

The relative position and orientation between the current
camera frame

{
Ck
}

and the keyframe {C∗} are represented
with the rigid body transformation matrix Tk,∗ ∈ SE(3):

X̃k = Tk,∗X̃
∗ (3)

where X̃k = [Xk>, 1]> is the homogeneous form of Xk. In
this paper, a minimal representation of Lie group SE(3), i.e.
Lie algebra se(3) parameter ξ, is mainly used to express the
incremental displacements during a numerical optimization
algorithm. We can represent the Lie algebra parameter with
a 6 × 1 vector ξ =

[
ν>,ω>

]>
where ν and ω are

infinitesimal translation and rotation in the tangent space
of the matrix group SE(3). The rigid body transformation
matrix T ∈ SE(3) can be calculated by the exponential map:

T (ξ) = exp(ξ̂) (4)

where ξ̂ is a 4× 4 twist matrix from the Lie algebra ξ [25].
With the above notations, the problem we want to solve is

to estimate the rigid body transformation matrix Tk,∗ given
a sequence of image frames and the corresponding depth
maps from RGB-D sensor under arbitrary, abrupt, and partial
illumination changes between consecutive image frames.

IV. PROPOSED VISUAL ODOMETRY ALGORITHM

The schematic overview of the proposed visual odometry
algorithm and the data flow are represented in Fig. 3. First,
RGB and depth images from RGB-D camera are used to
initialize a keyframe with patches. The pixel points that are
the center of the patches in RGB image are detected by
the blob detector like LoG, DoG, or SURF [26]. Among
them, the only valid patches are saved and utilized in motion
estimation process until a next keyframe is re-initialized.
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Fig. 3. A overview of the proposed visual odometry algorithm. (Step 1) Initially, the keyframe is initialized with the RGB I∗ and depth D∗ image
with patch selection process. (Step 2) The current image Ik is warped with the current estimated model parameters z. (Step 3) The residual image is then
calculated with the results from Step 1 and Step 2. (Step 4) Weighting function is determined by the residual distribution. (Step 5) The gradient images of
I∗ and Ik are warped and Jacobian matrix of 3D warping function is calculated with the current model parameters. (Step 6) The entire Jacobian matrix
is obtained with the results in Step 5 and the current model parameters to minimize the newly proposed photometric error. (Step 7) In the end, this step
yields model parameter updates 4z by combining the Jacobian matrix J , the residual vector r, and the diagonal weighting matrix W . (Step 8) 4z is
added to the previous guess of the model parameters z. The above procedure is repeated until convergence and the estimated trajectory of RGB-D camera
is obtained by concatenating the motion estimation results.

After the keyframe is initialized, a residual image is obtained
by using the keyframe with patches, current image frame,
and the model parameters ξ. Each weight of the residual
value is determined by t-distribution of all residuals. Next,
Jacobian matrix is calculated with the gradient images of the
keyframe and the current image frame to minimize the newly
proposed photometric error. The proposed visual odometry
algorithm is based on not the photo-consistency assumption
like [3], [19], and [27], but the photo-consistency assumption
with compensation of illumination changes between the two
consecutive images. By combining the Jacobian matrix J ,
the residual vector r, and the diagonal weighting matrix W ,
the incremental displacements of the model parameter 4z is
calculated. The model parameter z is updated and the above
procedure is repeated until convergence. If the Euclidian
distance between the keyframe and the current image frame
is too far, the next keyframe is newly initialized with the
current RGB and depth image. Finally, the whole trajectory
of RGB-D camera is obtained by concatenating the frame-

to-frame motion estimation results.

A. Illumination Change Model

The photo-consistency assumption employed in [3] and
[19] is not always valid in real world because illumination
changes such as highlights, shadows caused by the variation
of the viewpoint of the camera, unpredictable changes of
light source, and the camera automatic gain are unavoidable
phenomena during the direct visual odometry. To reflect
not only the global but also the local illumination changes
between the keyframe and the current frame, we adopt the
affine illumination change model [14] per patch as follows:

λiI
k
i + δi = I∗i (5)

Here λi and δi are the model parameters to represent contrast
and brightness changes of the i-th patch in the image. During
the optimization process, these parameters per patch are es-
timated and utilized to compensate the irregular illumination
changes between the keyframe and the current frame.
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B. Planar Patch Selection

The patch-based keyframe image generation method is
employed to solve two critical issues in direct visual odom-
etry process: reducing computation time and taking into
account both global and local illumination changes.

The computation time is proportional to the number of
pixels in the direct visual odometry since every pixel should
go through the 3D backward or forward image warping. For
example, in [3], [13], the entire pixels in the image are used.
We observe, however, that the number of pixels fewer than
50% of the entire pixels in the image is still enough to
estimate the motion of the camera [19]. Thus, the patch-
based keyframe image as depicted in Fig. 4(a) can be used
to carry out the direct visual odometry process.

For the issue of illumination changes, although the global
changes have been considered in [13] and [22], the partial
changes have not been concerned yet. On the other hand, to
take into account the local illumination changes, we assume
that each patch follows the different illumination changes
individually as illustrated in Fig. 4(a), where each patch has
its own unique λi and δi. And to make the above assumption
valid, the patches only on the planar surface in the real world
are selected because 3D points on the same plane undergo
the similar illumination changes [14]. It can be achieved by
utilizing the blob detector like LoG, DoG, SURF [26] and
the plane model based RANSAC algorithm [28]. At first,
the blob detector is used to extract the patches on the planar
surface in the 3D space. After that, RANSAC algorithm is
applied to robustly fit the plane to a set of 3D data points
from the extracted patch’s pixel points and the depth image
from RGB-D sensor. The plane of each patch is fitted with
the following equation:

ax+ by + cz + d = 0 (6)

where a, b, c, and d are the model parameters of the plane
and x, y, z is the 3D point on the plane. Based on Eq. (6),
the error function of the plane RANSAC algorithm can be
formulated as follows:

lj =

∣∣aX∗ij + bY ∗ij + cZ∗ij + d
∣∣

√
a2 + b2 + c2

(7)

where lj is the length between the plane (a, b, c, d) and the
3D point (X∗ij , Y

∗
ij , Z

∗
ij) expressed in the camera keyframe.

Using RANSAC with the error function Eq. (7), we can
determine how many points are out of the plane in each
patch. Fig. 5(b) depicts the outlier points as red and inlier
points as black. If more than half of the points of a patch
are out of the plane, these kinds of patches are rejected and
discarded. In this manner, only the valid patches that are on
the plane in 3D space as described in Fig. 5(a) survive and
pass through the direct motion estimation process.

C. Direct Motion Estimation

We generated the patch-based keyframe gray and depth
image I∗, D∗ in the previous step, and the current image
frame Ik comes from the RGB-D camera. With I∗, D∗, and
Ik, our goal is to estimate the relative camera pose Tk,∗

(a) (b)

(c) (d)

Figure 4

Fig. 4. Input and output images of the proposed visual odometry
algorithm. (a) Patch-based keyframe image generated by the SURF and
the plane RANSAC algorithm. (b) Current gray image frame captured
under illumination changes. (c) Residual image between the patch-based
keyframe and the current image frame, which we want to minimize. (d)
Image alignment result with (a) and (b) based on estimated relative camera
pose. The colored part comes from (a) and the gray part comes from (b).
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Fig. 5. Planar patch selection results based on the plane RANSAC
algorithm. (a) The extracted valid patches which are on the planar surface
in the 3D Cartesian coordinate. (b) The process of determining whether 3D
points are on the same plane or not.

and the illumination change model parameters per patch,
i.e., λ1, δ1, ..., λm, δm where m is the number of patches in
the keyframe image I∗. In contrast with the existing photo-
consistency assumption [3], our photo-consistency assump-
tion that considers the illumination changes can be written
as the following equation:

λiI
k
i (w(ξ,x

∗
ij)) + δi = I∗i (x

∗
ij) (8)

w(ξ,x∗ij) = π(T (ξ) · π−1(x∗ij , Z∗ij))) (9)

where ξ ∈ R6 represents the relative motion of the camera
and w(ξ,x∗ij) is the 3D backward warping function which
is a one-to-one mapping from a pixel point x∗ij in the patch-
based keyframe image to a pixel coordinate in the current
image frame given the relative camera motion ξ. To simplify
expression of the overall model parameters which we have
to estimate, the integrated new model parameter z is defined
as follows:

z :=
[
ξ>, λ1, δ1, ..., λm, δm

]>
∈ R6+2m (10)

Based on the defined notations and the modified photo-
consistency assumption as written in Eq. (8), we define the
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residual of the j-th pixel in the i-th patch as the photometric
difference with compensation of the illumination changes
between pixels observed in the keyframe and the current
frame:

rij(z) = λiI
k
i (w(ξ,x

∗
ij)) + δi − I∗i (x∗ij) (11)

We seek the optimal model parameter z∗ that minimizes the
weighted sum of squared residuals, which is the following
non-linear weighted least square problem:

z∗ = argmin
z

m∑
i=1

n∑
j=1

W (rij)r
2
ij(z) (12)

where n is the number of pixels in each patch and W (rij)
is the weighting function that gives the different weights to
each residual value based on the residual distribution. We
assume that the residual distribution follows the t-distribution
by following [3]. We solve the iteratively re-weighted least
square (IRLS) problem with weighting function determined
by the t-distribution.

To find the optimal model parameter z∗ written in Eq. (12),
Gauss-Newton algorithm is selected. And there are several
image alignment strategies in the direct methods: forward
compositional (FC), inverse compositional (IC), and efficient
second-order minimization (ESM). Among them, it is well
known that ESM method outperforms the other methods [10],
[13]. Thus, the Jacobian matrix is calculated with respect to
the newly defined model parameter z based on the ESM
algorithm [29]. By plugging and arranging the equations
(8)−(12), the normal equation is obtained:

JTWJ 4 z = −JTWr (13)

J ∈ R(mn)×(6+2m),W ∈ R(mn)×(mn), r ∈ R(mn)

J =



λ1JIJw Ik1 (w(ξ,x
∗
11)) 1 0 ... 0

λ1JIJw Ik1 (w(ξ,x
∗
12)) 1 0 ... 0

. . . . . .

. . . . . .

. . . . . .
λmJIJw 0 ... 0 Ikm(w(ξ,x∗mn−1)) 1
λmJIJw 0 ... 0 Ikm(w(ξ,x∗mn)) 1


(14)

JIJw =
1

2

(
∂I∗(x∗)

∂x
+
∂Ik(w(ξ,x∗))

∂x

)
∂w(ξ,x∗)

∂ξ
(15)

In Eq. (13), note that J is the stacked Jacobian matrix and W
is the diagonal matrix that represents each residual’s weight
and r is the tall residual vector coming from Eq. (11). At
every iteration in IRLS, we can compute the incremental
value 4z and based on that incremental values, we update
the relative camera pose Tk,∗ and the illumination change
model parameters λi, δi with i = 1, ...,m until the integrated
model parameter z converges. Additionally, similar to [3] and
[13], a coarse-to-fine approach is employed with the image
pyramid method for robustness and faster convergence. The
gaussian pyramid is utilized to compute the image pyramid
and run the above optimization process from the coarsest
level to the finest. In this manner, we can compute the
relative camera motion and the illumination change model
parameters much faster and accurately.

Figure 6

(b)

(a)

Fig. 6. The RGB image sequences in synthetic & author-collected RGB-
D dataset. (a) To simulate irregular illumination changes, we manipulate
the intensity values of the images in TUM RGB-D dataset based on four
different illumination change models. (b) The images are captured in a
stationary position with calibrated Asus Xtion Pro Live RGB-D sensor. To
test the robustness to illumination changes of each method in real world,
lights in the room are turned on and off repeatedly by author.

V. EVALUATION

The proposed Patch-based Illumination invariant Visual
Odometry (PIVO) algorithm is tested with two types of
datasets: synthetic RGB-D dataset which is based on
TUM RGB-D benchmark [15] and author-collected RGB-
D dataset. In RGB images of the synthetic RGB-D dataset,
artificial illumination changes are applied to validate the
proposed visual odometry method. Author-collected RGB-
D dataset consists of the RGB and depth images captured
under an actual illumination change with static pose. Three
performance metrics are used to evaluate the performance of
the proposed visual odometry algorithm: root mean square
error (RMSE) of the relative pose error (RPE), and the
absolute trajectory error (ATE) defined in [15] and the final
drift error divided by the length of the entire trajectory.
We compare the motion estimation results with author-
implemented version of [3] and [13]. All calculations and
processes are conducted on a desktop computer with Intel
Core i5 with 3.2 Ghz with 8GB memory and the program
is implemented in MATLAB. PIVO takes about 200-300 ms
per frame in our current setting.

A. Synthetic RGB-D Dataset

The TUM RGB-D dataset consists of RGB and depth
images taken at full frame rate (30 Hz) and ground-truth
pose of the RGB-D camera obtained from a motion capture
system (100 Hz). But they do not involve abrupt, irregular
illumination changes. Thus, we modify intensity values based
on the illumination change model [14] to simulate the irreg-
ular illumination changes in TUM RGB-D dataset. A image,
at first, is divided into four regions and the intensity values
in each of the four region are modified with four different
illumination change models to give partial lighting changes.
We call the modified image sequences as the synthetic RGB-
D dataset and some of the synthetic RGB images are drawn
in Fig. 6(a).

We evaluate the motion estimation accuracy of PIVO in an
environment where the irregular illumination changes occur
compared to the Dense Visual Odometry (DVO) [3], and
Efficient DVO (EDVO) [13]. The evaluations are performed
with the eleven synthetic RGB-D image sequences and the
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TABLE I
ESTIMATION RESULTS WITH SYNTHETIC RGB-D DATASET

Name of Dataset
RPE [drift m/s] Drift Error [%]

DVO EDVO PIVO DVO EDVO PIVO

fr1/desk 0.257 0.076 0.057 3.23 1.65 1.15
fr1/desk2 0.616 0.252 0.183 15.34 6.18 3.42
fr1/floor 1.214 0.224 0.203 7.18 9.05 5.67
fr1/room 3.648 1.119 0.262 59.39 14.18 3.25
fr2/desk 0.288 0.232 0.231 13.88 1.19 0.79
fr2/largenoloop 5.300 3.624 2.268 74.24 48.06 12.32
fr3/longoffice 0.592 0.045 0.040 9.12 1.57 1.39
fr3/nostruc&notex 5.757 14.014 0.067 261.88 1325.86 15.62
fr3/nostruc&tex 1.615 0.228 0.107 106.63 13.16 8.49
fr3/struc&notex 10.062 1.483 0.021 372.98 312.43 5.03
fr3/struc&tex 0.105 0.034 0.023 31.56 4.54 2.34Figure 7
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Fig. 7. Comparison of three visual odometry estimation results against
the ground truth. (a) ‘fr1/room’ (b) ‘fr3/longoffice’ (c) ‘fr3/struc&notex’
(d) ‘fr3/struc&tex’. The motion estimation results of the tested visual
odometry methods (DVO, EDVO, and PIVO) are drawn with the ground
truth trajectory. It is shown that PIVO is relatively more closer to the ground
truth in all cases.

motion estimation results for each visual odometry method
are summarized in TABLE I. In all cases, we observe
that our method generates better results than DVO, EDVO.
In most cases except ‘fr1/desk’, DVO has failed to esti-
mate pose with illumination changes. EDVO presents good
performances on some datasets: ‘fr2/desk’, ‘fr1/desk’, and
‘fr3/longoffice’ due to the compensation factor of the global
illumination changes. However, it shows poor results on
‘fr3/nostruc&notex’, ‘fr3/struc&notex’. Fig. 7 shows the 3D
estimated trajectories of each visual odometry method with
four different image sequences. Absolute trajectory error
(ATE) of each method is also presented in Fig. 8 with the
same datasets used in Fig. 7. Estimation error of the other
two visual odometry methods except PIVO increases rapidly
during the interval marked by the gray dotted lines where
the illumination changes occur in the image sequences.

In particular, the dataset ‘fr3/struc&notex’ is selected to
analyze the result in detail. During the period from 100 to
300 image frames where the illumination changes occur,

Figure 8
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Fig. 8. Absolute trajectory errors of each tested dataset. (a) ‘fr1/room’
(b) ‘fr3/longoffice’ (c) ‘fr3/struc&notex’ (d) ‘fr3/struc&tex’. Irregular illu-
mination changes occur in the time interval between the gray dotted lines.
During that interval, ATE of DVO, EDVO increases rapidly.
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Fig. 9. Weighting functions with respect to the residuals of each
method. (a+b+c) Top row shows 100-, 130-, and 200-th image frame
of ‘fr3/struc&notex’, from left to right. The graphs are weight functions
assigned to residual at each frame. DVO and EDVO assign high weight to
large residual as the photo consistency assumption breaks down.

we can find that PIVO estimates the position, pose of
the camera accurately whereas the drift of DVO, EDVO
gradually increases as described in Fig. 8(c). The main reason
for this difference is that the photo-consistency assumption is
violated in this period. Although a robust weighting function
is used for discarding outliers in DVO or a global affine
illumination change concept is considered in EDVO, the cost
functions in DVO, EDVO are not effective enough to take
into account the sudden, partial lighting variations. PIVO
efficiently copes with this kind of illumination changes by
using the proposed cost function in Eq. (12). This can be
confirmed in Fig. 9. DVO and EDVO assign high weight
to large residual as the photo-consistency assumption breaks
down in the cases of Figs. 9(b) and (c), which degrades the
accuracy. On the other hand, under PIVO, the large weight
remains only over small residual during the light variations,
which means that the illumination changes are compensated
properly.

B. Author-collected stationary RGB-D dataset

RGB and depth images in the RGB-D dataset collected
by the author are taken in a fixed position, which means
that RGB-D camera does not move at all throughout the
whole image sequences as illustrated in Fig. 6(b). Instead,
lights in the room are turned on and off repeatedly to test the
robustness to illumination changes for the individual visual
odometry methods. The evaluations are performed with three
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TABLE II
ESTIMATION RESULTS WITH AUTHOR-COLLECTED RGB-D DATASET

Name of Dataset
RPE [drift m/s] ATE [m]

DVO EDVO PIVO DVO EDVO PIVO

LAB1 1.320 1.036 0.044 2.484 1.868 0.247
LAB2 1.545 0.210 0.006 4.499 0.716 0.014
LAB3 0.222 0.009 0.011 0.942 0.014 0.023
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Fig. 10. Comparison of 3D estimated trajectories and ATE in ‘LAB2’.
(a) PIVO estimates the position of the fixed camera correctly. (b) ATE of
each visual odometry method is drawn. Error of DVO and EDVO increases
whereas PIVO maintains almost zero value throughout the entire sequences.

types of dataset. Sudden illumination changes take place in
the entire images in ‘LAB1’. Next, partial and irregular light
variations occur in ‘LAB2’. Lastly, lighting changes happen
a little in ‘LAB3’. The estimation results of each image
sequence are summarized in TABLE II.

As we expected, PIVO estimates the position of the
stationary RGB-D sensor correctly in ‘LAB2’ and ‘LAB3’.
On the other hand, incorrect movements of the camera as
drawn in Fig. 10 are estimated by DVO and EDVO because
of abrupt, irregular illumination changes in the images. DVO
even produces a large drift error in ‘LAB3’, which means
DVO is particularly sensitive to changes in light.

VI. CONCLUSION

In this paper, we proposed a patch-based illumination
invariant visual odometry, which works well in the irregular
illumination change. To consider the partial light variations,
the planar patch selection process is employed and the
illumination change model is adopted in each extracted
patch. The proposed cost function reflecting the illumination
changes is minimized by using the robust weighting function
and the efficient second-order minimization (ESM) image
alignment method. As a result, our method can accurately
estimate the motion of the camera regardless of the partial
lighting changes. Evaluation results with the synthetic RGB-
D dataset and real experiments show that the accuracy of
our algorithm is superior to the other direct visual odometry
methods not only in the ordinary image sequences, but also
in the illumination change.
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